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Abstract—In this paper, we study the Dirichlet problem asso-
ciated to the degenerate nonlinear elliptic equations{

Lu(x) = µ in Ω,

u(x) = 0 on ∂Ω,

where

Lu(x) = −div
[
ω1(x)A(x,∇u(x)) + ω2(x)B(x, u(x),∇u(x))

]
+ ω1(x)g(x, u(x)) + ω2(x)H(x, u(x),∇u(x)),

is a second order degenerate elliptic operator, with A : Ω ×
Rn −→ R, B : Ω × R × Rn −→ R, g : Ω × R −→ R and H :
Ω×R×Rn −→ R are Caratéodory functions, who satisfies some
conditions, and the right-hand side term µ belongs to L1(Ω) +
n∏

j=1

Lp′(Ω, ω1−p′

1 ), ω1 and ω2 are weight functions that will be

defined in the preliminaries.
Index Terms—Nonlinear degenerate elliptic equations, Dirich-

let problem, weighted Sobolev spaces, weak solution

I. INTRODUCTION

Let Ω be a bounded open subset in Rn ( n ≥ 2), ∂Ω its
boundary and p > 1 and ω1, ω2 are two weights functions
in Ω (ω1 and ω2 are measurable and strictly positive a.e. in
Ω). Let us consider the following nonlinear degenerate elliptic
problem {

Lu(x) = µ in Ω,

u(x) = 0 on ∂Ω,
(1)

where, L is a second order degenerate elliptic operator

Lu(x) = −div
[
ω1(x)A(x,∇u(x)) + ω2(x)B(x, u(x),∇u(x))

]
+ ω1(x)g(x, u(x)) + ω2(x)H(x, u(x),∇u(x)), (2)

and

µ = f0 −
n∑
j=1

Djfj , (3)

with f0 ∈ L1(Ω) and for j = 1, ..., n, fj ∈ Lp
′
(Ω, ω1−p′

1 ).
Furthermore, the functions A : Ω×Rn −→ R, B : Ω×R×
Rn −→ R, g : Ω × R −→ R and H : Ω × R × Rn −→ R
are Caratéodory functions, who satisfying the assumptions of
growth, ellipticity and monotonicity.

In the past decade, much attention has been devoted to
nonlinear elliptic equations because of their wide application
to physical models such as non-Newtonian fluids, boundary
layer phenomena for viscous fluids, and chemical heteroge-
nous model, we mention some works in this direction [1], [4],
[5], [7]. One of the motivations for studying (1) comes from
applications to electrorheological fluids (see [19] for more
details) as an important class of non-Newtonian fluids.

In general, the Sobolev spaces W k,p(Ω) without weights
occur as spaces of solutions for elliptic and parabolic par-
tial difierential equations. For degenerate partial differential
equations, where we have equations with various types of
singularities in the coefficients, it is natural to look for
solutions in weighted Sobolev spaces [2], [4], [12], [13], [16].
The type of a weight depends on the equation type.

For ω1 ≡ ω2 ≡ 1 (the non weighted case) and A(x,∇u) ≡
g ≡ 0, Equation of the from (1) have been widely studied in
[10], where the authors obtain some existence results for the
solutions (see also the references therein).

Boccardo et al. [6] considered the nonlinear boundary value
problem

−div(a(x, u,∇u)) + g(x, u,∇u) = µ,

where µ ∈ L1(Ω) +W−1,p′(Ω) and g(x, u,∇u) ∈ L1(Ω). By
combining the truncation technique with some delicate test
functions, the authors showed that the problem has a solution
u ∈W 1,p

0 (Ω). Furthermore the degenerate case with difierent
conditions haven been studied by many authors (we refer to
[11], [22] for more details).
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In [3], the authors proved the existence results, in the
setting of weighted Sobolev spaces, for quasilinear degener-
ated elliptic problems associated with the following equation
−div

(
a(x, u,∇u)

)
+ g(x, u,∇u) = f − divF , where g

satisfies the sign condition.
In [8] the author proved the existence of solutions for the

problem (1) when ω1 ≡ ω2 and A(x,∇u) ≡ g ≡ 0. When
H(x, u,∇u) ≡ g ≡ 0 existence result for the Problem (1)
have been shown in [9].

Our objectif, in this paper, is to study equation (1) by adopt-
ing Sobolev spaces with weight W 1,p

0 (Ω, ω1) (see Definition
2.3). By apply the main theorem on monotone operators (see
Theorem 2.3), we show that the Problem (1) admits one and
only solution u ∈W 1,p

0 (Ω, ω1).
The paper is organized as follows. In Section 2, we give

some preliminaries and the definition of weighted Sobolev
spaces and some technical lemmas needed in our peper. In
Section 3, we make precise all the assumptions on A, B,
g, H and we introduce the notion of weak solution for the
Problem (1). Our main result and his proof, the existence and
uniqueness of solution to Equation (1), are collected in Section
4. Section 5 is devoted to an example which illustrates our
main result.

II. PRELIMINARIES

In this section, we present some definitions, and preliminar-
ies facts which are used throughout this paper.

By a weight, we shall mean a locally integrable function
ω on Rn such that ω(x) > 0 for a.e. x ∈ Rn. Every weight
ω gives rise to a measure on the measurable subsets on Rn
through integration. This measure will also be denoted by ω.
Thus,

ω(E) =

∫
E

ω(x)dx for measurable subset E ⊂ Rn.

For 0 < p < ∞, we denote by Lp(Ω, ω) the space of
measurable functions f on Ω such that

||f ||Lp(Ω,ω) =

∫
E

|f(x)|pω(x)dx

 1
p

<∞,

where ω is a weight, and Ω be open in Rn.
It is a well-known fact that the space Lp(Ω, ω), endowed

with this norm is a Banach space. We also have that the dual
space of Lp(Ω, ω) is the space Lp

′
(Ω, ω1−p′).

We now determine conditions on the weight ω that guar-
antee that functions in Lp(Ω, ω) are locally integrable on Ω.

Proposition 2.1: [17], [18] Let 1 ≤ p <∞. If the weight ω
is such that

ω
−1
p−1 ∈ L1

loc(Ω) if p > 1,

ess sup
x∈B

1

ω(x)
< +∞ if p = 1,

for every ball B ⊂ Ω. Then,

Lp(Ω, ω) ⊂ L1
loc(Ω).

As a consequence, under conditions of Proposition 2.1, the
convergence in Lp(Ω, ω) implies convergence in L1

loc(Ω).
Moreover, every function in Lp(Ω, ω) has a distributional
derivatives. It thus makes sense to talk about distributional
derivatives of functions in Lp(Ω, ω).

A class of weights, which is particularly well understood,
is the class of Ap-weight that was introduced by B. Mucken-
houpt.

Definition 2.1: Let 1 ≤ p <∞. A weight ω is said to be an
Ap-weight, or ω belongs to the Muckenhoupt class, if there
exists a positive constant C = C(p, ω) such that, for every
ball B ⊂ Rn(

1

|B|

∫
B

ω(x)dx

)(
1

|B|

∫
B

(ω(x))
−1
p−1 dx

)p−1

≤ C if p > 1,(
1

|B|

∫
B

ω(x)dx

)
ess sup

x∈B

1

ω(x)
≤ C if p = 1,

where |.| denotes the n-dimensional Lebesgue measure in Rn.
The infimum over all such constants C is called the Ap
constant of ω. We denote by Ap, 1 ≤ p < ∞, the set of
all Ap weights.

If 1 ≤ q ≤ p < ∞, then A1 ⊂ Aq ⊂ Ap and the Aq
constant of ω equals the Ap constant of ω (we refer to [15],
[16], [20] for more informations about Ap-weights).

Example 2.1: (Example of Ap-weights)
(i) If ω is a weight and there exist two positive constants

C and D such that C ≤ ω(x) ≤ D for a.e. x ∈ Rn,
then ω ∈ Ap for 1 ≤ p <∞.

(ii) Suppose that ω(x) = |x|η , x ∈ Rn. Then ω ∈ Ap if
and only if −n < η < n(p − 1) for 1 ≤ p < ∞
(see Corollary 4.4, Chapter IX in [20]).

(iii) Let Ω be an open subset of Rn. Then ω(x) =
eλϕ(x) ∈ A2, with ϕ ∈W 1,n(Ω) and λ is sufficiently
small (see Corollary 2.18 in [15]).

Definition 2.2: A weight ω is said to be doubling, if there
exists a positive constant C such that

ω(2B) ≤ Cω(B),

for every ball B = B(x, r) ⊂ Rn, where ω(B) =

∫
B

ω(x)dx

and 2B denotes the ball with the same center as B which is
twice as large. The infimum over all constants C is called the
doubling constant of ω.
It follows directly from the Ap condition and Hölder inequality
that an Ap-weight has the following strong doubling property.
In particular, every Ap-weight is doubling (see Corollary 15.7
in [16]).

Proposition 2.2: [21] Let ω ∈ Ap with 1 ≤ p <∞ and let
E be a measurable subset of a ball B ⊂ Rn. Then(

|E|
|B|

)p
≤ Cω(E)

ω(B)

where C is the Ap constant of ω.
Remark 2.1: If ω(E) = 0 then |E| = 0. The measure ω and

the Lebesgue measure |.| are mutually absolutely continuous,

IJOA ©2021 2
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that is they have the same zero sets
(
ω(E) = 0 if and only

if |E| = 0
)
; so there is no need to specify the measure when

using the ubiquitous expression almost everywhere and almost
every, both abbreviated a.e..
The weighted Sobolev space W 1,p(Ω, ω) is defined as follows.

Definition 2.3: Let Ω ⊂ Rn be open, and let ω be an Ap-
weight, 1 ≤ p < ∞. We define the weighted Sobolev space
W 1,p(Ω, ω) as the set of functions u ∈ Lp(Ω, ω) with weak
derivatives Dju ∈ Lp(Ω, ω), for j = 1, ..., n. The norm of u
in W 1,p(Ω, ω) is given by

||u||pW 1,p(Ω,ω) =

∫
Ω

|u(x)|pω(x)dx+
n∑
j=1

∫
Ω

|Dju(x)|pω(x)dx.

We also define W 1,p
0 (Ω, ω) as the closure of C∞0 (Ω) in

W 1,p(Ω, ω) with respect to the norm ||.||W 1,p(Ω,ω). Note that
C∞0 (Ω) is dense in W 1,p

0 (Ω, ω).
Equipped by this norm, W 1,p(Ω, ω) and W 1,p

0 (Ω, ω) are
separable and reflevixe Banach spaces

(
see Proposition 2.1.2.

in [21] and see [18] for more informations about the spaces
W 1,p(Ω, ω)

)
. The dual of space W 1,p

0 (Ω, ω) is the space
W−1,p′

0 (Ω, ω1−p′).
Let us give the following theorems which are needed later.
Theorem 2.1: [14] Let ω ∈ Ap, 1 ≤ p <∞, and let Ω be a

bounded open set in Rn. If um −→ u in Lp(Ω, ω), then there
exist a subsequence (umk) and a function Φ ∈ Lp(Ω, ω) such
that

(i) umk(x) −→ u(x), mk −→∞, ω-a.e. on Ω.
(ii) |umk(x)| ≤ Φ(x), ω-a.e. on Ω.
Theorem 2.2: [11] (The weighted Sobolev inequality) Let

ω ∈ Ap, 1 ≤ p < ∞, and let Ω be a bounded open set in
Rn. There exist constants CΩ and δ positive such that for all
u ∈W 1,p

0 (Ω, ω) and all θ satisfying 1 ≤ θ ≤ n
n−1 + δ,

||u||Lθp(Ω,ω) ≤ CΩ||∇u||Lp(Ω,ω),

where CΩ depends only on n, p, the Ap constant of ω and the
diameter of Ω.

Theorem 2.3: [22] Let A : X −→ X∗ be a monotone,
coercive and hemicontinuous operator on the real, separable,
reflexive Banach space X . Then the following assertions hold:

(a) For each T ∈ X∗, the equation Au = T has a
solution u ∈ X .

(b) If the operator A is strictly monotone, then equation
Au = T has a unique solution u ∈ X .

III. BASIC ASSUMPTIONS AND NOTION OF SOLUTIONS

A. Basic assumptions

Let us now give the precise hypotheses on the Problem
(1), we assume that the following assumptions: Ω be a
bounded open subset of Rn( n ≥ 2), 1 < q < p < ∞,
let ω1 and ω2 are two weights functions, and let Aj :
Ω × Rn −→ R, Bj : Ω × R × Rn −→ R (j =

1, ..., n), with B(x, η, ξ) =
(
B1(x, η, ξ), ...,Bn(x, η, ξ)

)
and

A(x, ξ) =
(
A1(x, ξ), ...,An(x, ξ)

)
, g : Ω × R −→ R and

H : Ω×R×Rn −→ R satisfying the following assumptions:

(A1) For j = 1, ..., n, Bj , Aj , g and H are Caratéodory
functions.

(A2) There are positive functions
h1, h2, h3, h4, h5, h6 ∈ L∞(Ω) and
K1, K4 ∈ Lp

′
(Ω, ω1)

(
with 1

p + 1
p′ = 1

)
and

K2, K3 ∈ Lq
′
(Ω, ω2)

(
with 1

q + 1
q′ = 1

)
such that :

|A(x, ξ)| ≤ K1(x) + h1(x)|ξ|
p
p′ ,

|B(x, η, ξ)| ≤ K2(x) + h2(x)|η|
q
q′ + h3(x)|ξ|

q
q′ ,

|g(x, η)| ≤ K4(x) + h6(x)|η|
p
p′ ,

and

|H(x, η, ξ)| ≤ K3(x) + h4(x)|η|
q
q′ + h5(x)|ξ|

q
q′ .

(A3) There exists a constant α > 0 such that :

〈A(x, ξ)−A(x, ξ
′
), ξ − ξ

′
〉 ≥ α|ξ − ξ

′
|p,

〈B(x, η, ξ)− B(x, η
′
, ξ
′
), ξ − ξ

′
〉 ≥ 0,(

g(x, η)− g(x, η
′
)
)(
η − η

′
)
≥ 0,

and (
H(x, η, ξ)−H(x, η

′
, ξ
′
)
)(
η − η

′
)
≥ 0,

whenever (η, ξ), (η′, ξ′) ∈ R × Rn with η 6= η
′

and
ξ 6= ξ

′
(

where 〈., .〉 denotes here the usual inner

product in Rn
)

.

(A4) There are constants λ1, λ2, λ3, λ4 > 0 such that :

〈A(x, ξ), ξ〉 ≥ λ1|ξ|p,

〈B(x, η, ξ), ξ〉 ≥ λ2|ξ|q + λ3|η|q,

g(x, η)η ≥ λ4|η|p,

and
H(x, η, ξ)η ≥ 0.

B. Notions of solutions

The definition of a weak solution for Problem (1) can be
stated as follows.

Definition 3.1: We say that an element u ∈W 1,p
0 (Ω, ω1) is

a weak solution of Problem (1) if :∫
Ω

〈A(x,∇u),∇ϕ〉ω1dx+

∫
Ω

〈B(x, u,∇u),∇ϕ〉ω2dx

+

∫
Ω

g(x, u)ϕω1dx+

∫
Ω

H(x, u,∇u)ϕω2dx

=

∫
Ω

f0ϕdx+
n∑
j=1

∫
Ω

fjDjϕdx,

for all ϕ ∈W 1,p
0 (Ω, ω1).

Remark 3.1: We seek to establish a relationship between
ω1 and ω2, in order to ensure the existence and uniqueness
of solution for our Problem (1). At first we notice if ω2

ω1
∈
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Ls(Ω, ω1) where s = p
p−q , 1 < q < p <∞ and ω1, ω2 ∈ Ap,

then, by Hölder inequality we obtain

||u||Lq(Ω,ω2) ≤ Cp,q||u||Lp(Ω,ω1),

where Cp,q = ||ω2

ω1
||1/qLs(Ω,ω1).

IV. MAIN RESULT

A. Result on the existence and uniqueness

In this subsection we will state the existence and uniqueness
of solution to Problem (1) in Theorem 4.1. In the next
subsections we will present the proof.

Theorem 4.1: Let 1 < q < p <∞ and assume that (A1)−
(A4) holds. If

(i) f0/ω2 ∈ Lq
′
(Ω, ω2) and fj/ω1 ∈ Lp

′
(Ω, ω1) (j =

1, ..., n)..
(ii) ω1, ω2 ∈ Ap such that ω2

ω1
∈ Ls(Ω, ω1), where s =

p
p−q .

Then, the Problem (1) has only one solution u ∈W 1,p
0 (Ω, ω1).

B. Proof of Theorem 4.1

The basic idea of our proof is to reduce the Problem (1) to
an operator equation Au = T and apply the Theorem 2.3. The
proof of Theorem 4.1 will be divided into several steps.

1) Equivalent operator equation: In this subsection, we use
the somme tools and the condition (A2) to prove an existence
the operator A such that the Problem (1) is equivalent to the
operator equation Au = T. We introduce the operators

T : W 1,p
0 (Ω, ω1) −→ R

ϕ −→ T(ϕ) =

∫
Ω

f0ϕdx+
n∑
j=1

∫
Ω

fjDjϕdx,

and

B : W 1,p
0 (Ω, ω1)×W 1,p

0 (Ω, ω1) −→ R
(u, ϕ) −→ B1(u, ϕ) + B2(u, ϕ) + B3(u, ϕ) + B4(u, ϕ),

where, B1, B2, B3 and B4 are defined as follows

B1 : W 1,p
0 (Ω, ω1)×W 1,p

0 (Ω, ω1) −→ R

B1(u, ϕ) =

∫
Ω

〈A(x,∇u),∇ϕ〉ω1dx,

B2 : W 1,p
0 (Ω, ω1)×W 1,p

0 (Ω, ω1) −→ R

B2(u, ϕ) =

∫
Ω

〈B(x, u,∇u),∇ϕ〉ω2dx,

B3 : W 1,p
0 (Ω, ω1)×W 1,p

0 (Ω, ω1) −→ R

B3(u, ϕ) =

∫
Ω

g(x, u)ϕω1dx.

B4 : W 1,p
0 (Ω, ω1)×W 1,p

0 (Ω, ω1) −→ R

B4(u, ϕ) =

∫
Ω

H(x, u,∇u)ϕω2dx.

Then u ∈ W 1,p
0 (Ω, ω1) is a weak solution of Problem (1) if

and only if

B(u, ϕ) = T(ϕ), for all ϕ ∈W 1,p
0 (Ω, ω1).

We will show that T ∈W−1,p′

0 (Ω, ω1−p′
1 ) and B(u, .) is linear,

for each u ∈W 1,p
0 (Ω, ω1).

(i) Using Hölder inequality and Theorem 2.2(with θ = 1),
we obtain

|T(ϕ)|

≤
∫

Ω

|f0| |ϕ| dx+
n∑
j=1

∫
Ω

|fj | |Djϕ| dx

≤

Cp,q||f0/ω2||Lq′ (Ω,ω2) +
n∑
j=1

||fj/ω1||Lp′ (Ω,ω1)

 ||ϕ||W 1,p
0 (Ω,ω1).

According to f0/ω2 ∈ Lq
′
(Ω, ω2) and f/ω1 ∈

Lp
′
(Ω, ω1), we deduce that T ∈W−1,p′

0 (Ω, ω∗1).
(ii) Let u ∈W 1,p

0 (Ω, ω1). We have

|B(u, ϕ)| ≤ |B1(u, ϕ)|+ |B2(u, ϕ)|+ |B3(u, ϕ)|+ |B4(u, ϕ)|.
(4)

In (4), by (A2), Hölder inequality, Remark 3.1 and
Theorem 2.2(with θ = 1), we have

|B1(u, ϕ)| ≤
∫

Ω

|A(x,∇u)||∇ϕ|ω1dx

≤
∫

Ω

(
K1 + h1|∇u|

p
p′
)
|∇ϕ|ω1dx

≤
(
||K1||Lp′ (Ω,ω1) + ||h1||L∞(Ω)||u||

p
p′

W 1,p
0 (Ω,ω1)

)
||ϕ||W 1,p

0 (Ω,ω1),

and

|B2(u, ϕ)| ≤
∫

Ω

|B(x, u,∇u)||∇ϕ|ω2dx

≤
∫

Ω

(
K2 + h2|u|

q
q′ + h3|∇u|

q
q′
)
|∇ϕ|ω2dx

≤ ||K2||Lq′ (Ω,ω2)Cp,q||∇ϕ||Lp(Ω,ω1) + ||h2||L∞(Ω)C
q
q′
p,q||u||

q
q′

Lp(Ω,ω1)

Cp,q||∇ϕ||Lp(Ω,ω1) + ||h3||L∞(Ω)C
q
q′
p,q||∇u||

q
q′

Lp(Ω,ω1)Cp,q||∇ϕ||Lp(Ω,ω1)

≤
[
Cp,q||K2||Lq′ (Ω,ω2) + Cqp,q

(
||h2||L∞(Ω) + ||h3||L∞(Ω)

)
||u||q−1

W 1,p
0 (Ω,ω1)

]
||ϕ||W 1,p

0 (Ω,ω1).

Analogously, we have

|B3(u, ϕ)| ≤
∫

Ω

|g(x, u)||ϕ|ω1dx

≤
(
||K4||Lp′ (Ω,ω1) + ||h6||L∞(Ω)||u||

p
p′

W 1,p
0 (Ω,ω1)

)
||ϕ||W 1,p

0 (Ω,ω1),

and

|B4(u, ϕ)| ≤
∫

Ω

|H(x, u,∇u)||ϕ|ω2dx

≤
[
Cp,q||K3||Lq′ (Ω,ω2) + Cqp,q

(
||h4||L∞(Ω) + ||h5||L∞(Ω)

)
||u||q−1

W 1,p
0 (Ω,ω1)

]
||ϕ||W 1,p

0 (Ω,ω1).
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Hence, in (4) we obtain, for all u ∈W 1,p
0 (Ω, ω1),

|B(u, ϕ)|
≤
[
‖K1‖Lp′ (Ω,ω1) + ||K4||Lp′ (Ω,ω1) + Cp,q

(
‖K3‖Lq′ (Ω,ω2)

+‖K2‖Lq′ (Ω,ω2)

)
+
(
‖h1‖L∞(Ω) + ‖h6‖L∞(Ω)

)
‖u‖

p
p′

W 1,p
0 (Ω,ω1)

+Cqp,q

(
‖h2‖L∞(Ω) + ‖h3‖L∞(Ω) + ||h4||L∞(Ω) + ||h5||L∞(Ω)

)
‖u‖q−1

W 1,p
0 (Ω,ω1)

]
‖ϕ‖W 1,p

0 (Ω,ω1).

Since B(u, .) is linear and continuous, for each u ∈
W 1,p

0 (Ω, ω1), there exists a linear and continuous
operator denoted by A : W 1,p

0 (Ω, ω1) −→
W−1,p′

0 (Ω, ω1−p′
1 ) such that

〈Au, ϕ〉 = B(u, ϕ), for all u, ϕ ∈W 1,p
0 (Ω, ω1),

where 〈f, x〉 denotes the value of the linear functional f
at the point x . Moreover, we have

‖Au‖∗
≤ ‖K1‖Lp′ (Ω,ω1) + ||K4||Lp′ (Ω,ω1) + Cp,q

(
‖K3‖Lq′ (Ω,ω2)

+‖K2‖Lq′ (Ω,ω2)

)
+
(
‖h1‖L∞(Ω) + ‖h6‖L∞(Ω)

)
‖u‖

p
p′

W 1,p
0 (Ω,ω1)

+Cqp,q

(
‖h2‖L∞(Ω) + ‖h3‖L∞(Ω) + ||h4||L∞(Ω) + ||h5||L∞(Ω)

)
‖u‖q−1

W 1,p
0 (Ω,ω1)

,

where

‖Au‖∗ = sup

{
|〈Au, ϕ〉| = |B(u, ϕ)| : ‖ϕ‖W 1,p

0 (Ω,ω1) = 1

}
is the norm in W−1,p′

0 (Ω, ω1−p′
1 ).

Consequently, Problem (1) is equivalent to the operator equa-
tion

Au = T, u ∈W 1,p
0 (Ω, ω1).

2) Coercivity of the operator A: In this step, we prove
that the operator A is coercive. To this purpose let u ∈
W 1,p

0 (Ω, ω1), we have

〈Au, u〉 = B(u, u)

=

∫
Ω

〈A(x,∇u),∇u〉ω1dx+

∫
Ω

〈B(x, u,∇u),∇u〉ω2dx

+

∫
Ω

g(x, u)uω1dx+

∫
Ω

H(x, u,∇u)uω2dx.

Moreover, from (A4) and Theorem 2.2(with θ = 1), we obtain

〈Au, u〉 ≥ λ1

∫
Ω

|∇u|pω1dx+ λ2

∫
Ω

|∇u|qω2dx

+ λ3

∫
Ω

|u|qω2dx+ λ4

∫
Ω

|u|pω1dx

≥ min(λ1, λ4)

[∫
Ω

|∇u|pω1dx+

∫
Ω

|u|pω1dx

]
+ min(λ2, λ3)

[∫
Ω

|∇u|qω2dx+

∫
Ω

|u|qω2dx

]
= min(λ1, λ4)‖u‖p

W
1,p
0 (Ω,ω1)

+min(λ2, λ3)‖u‖q
W

1,q
0 (Ω,ω2)

≥ min(λ1, λ4)‖u‖p
W

1,p
0 (Ω,ω1)

.

Hence, we obtain

〈Au, u〉
‖u‖W 1,p

0 (Ω,ω1)

≥ min(λ1, λ4)‖u‖p−1

W 1,p
0 (Ω,ω1)

.

Therefore, since p > 1, we have

〈Au, u〉
‖u‖W 1,p

0 (Ω,ω1)

−→ +∞ as ‖u‖W 1,p
0 (Ω,ω1) −→ +∞,

that is, A is coercive.
3) Monotonicity of the operator A: The operator A is

strictly monotone. In fact, for all u1, u2 ∈ W 1,p
0 (Ω, ω1) with

u1 6= u2, we have

〈Au1 − Au2, u1 − u2〉 = B(u1, u1 − u2)− B(u2, u1 − u2)

=

∫
Ω

〈A(x,∇u1)−A(x,∇u2),∇(u1 − u2)〉ω1dx

+

∫
Ω

〈B(x, u1,∇u1)− B(x, u2,∇u2),∇(u1 − u2)〉ω2dx

+

∫
Ω

(
g(x, u1)− g(x, u2)

)(
u1 − u2

)
ω1dx

+

∫
Ω

(
H(x, u1,∇u1)−H(x, u2,∇u2)

)(
u1 − u2

)
ω2dx.

Thanks to (A3), we obtain

〈Au1 − Au2, u1 − u2〉 ≥
∫

Ω

α|∇(u1 − u2)|pω1dx

≥ α‖∇(u1 − u2)‖pLp(Ω,ω1),

and by Theorem 2.2(with θ = 1), we conclude that

〈Au1 − Au2, u1 − u2〉 ≥
α

(CpΩ + 1)
‖u1 − u2‖pW 1,p

0 (Ω,ω1)
.

Therefore, the operator A is strictly monotone.
4) Continuity of the operator A: We need to show that

the operator A is continuous. To this purpose let um −→
u in W 1,p

0 (Ω, ω1) as m −→ ∞. Note that if um −→ u in
W 1,p

0 (Ω, ω1), then um −→ u in Lp(Ω, ω1) et ∇um −→ ∇u
in (Lp(Ω, ω1))

n. Hence, thanks to Theorem 2.1, there exist
a subsequence (umk), functions Φ1 ∈ Lp(Ω, ω1) and Φ2 ∈
Lp(Ω, ω1) such that

umk(x) −→ u(x), ω1 − a.e. in Ω

|umk(x)| ≤ Φ1(x), ω1 − a.e. in Ω

∇umk(x) −→ ∇u(x), ω1 − a.e. in Ω

|∇umk(x)| ≤ Φ2(x), ω1 − a.e. in Ω.

(5)

We will show that Aum −→ Au in W−1,p′

0 (Ω, ω1−p′
1 ). In

order to prove this convergence we proceed in four steps.
Step 1:
For j = 1, ..., n, we define the operator

Fj : W 1,p
0 (Ω, ω1) −→ Lp

′
(Ω, ω1)

(Fju)(x) = Aj(x,∇u(x)).

We now show that the operator Fj is bounded and continuous.
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(i) Let u ∈W 1,p
0 (Ω, ω1). Using (A2) and Theorem 2.2(with

θ = 1), we obtain

‖Fju‖p
′

Lp′ (Ω,ω1)
=

∫
Ω

|Aj(x,∇u)|p
′
ω1dx

≤
∫

Ω

(
K1 + h1|∇u|

p
p′
)p′

ω1dx

≤ Cp
∫

Ω

(
Kp′

1 + hp
′

1 |∇u|p
)
ω1dx

≤ Cp
[
‖K1‖p

′

Lp′ (Ω,ω1)
+ ‖h1‖p

′

L∞(Ω)‖∇u‖
p
Lp(Ω,ω1)

]
≤ Cp

[
‖K1‖p

′

Lp′ (Ω,ω1)
+ ‖h1‖p

′

L∞(Ω)‖u‖
p

W 1,p
0 (Ω,ω1)

]
,

where the constant Cp depends only on p.
(ii) Let um −→ u in W 1,p

0 (Ω, ω1) as m −→∞. We need to
show that Fjum −→ Fju in Lp

′
(Ω, ω1). We will apply

the Lebesgue’s theorem and the convergence principle in
Banach spaces.
By (A2), we obtain

‖Fjumk − Fju‖
p′

Lp′ (Ω,ω1)

=

∫
Ω

|Fjumk(x)− Fju(x)|p
′
ω1dx

≤
∫

Ω

(|Aj(x,∇umk)|+ |Aj(x,∇u)|)p
′
ω1dx

≤ Cp
∫

Ω

(
|Aj(x,∇umk)|p

′
+ |Aj(x,∇u)|p

′
)
ω1dx

≤ Cp
∫

Ω

[(
K1 + h1|∇umk |

p
p′
)p′

+
(
K1 + h1|∇u|

p
p′
)p′]

ω1dx

≤ 2CpC
′

p

∫
Ω

(
Kp′

1 + hp
′

1 Φp2

)
ω1dx

≤ 2CpC
′

p

[
‖K1‖p

′

Lp′ (Ω,ω1)
+ ‖h1‖p

′

L∞(Ω)‖Φ2‖pLp(Ω,ω1)

]
.

Hence, thanks to (A1), we get, as k −→∞

Fjumk(x) = Aj(x,∇umk(x)) −→ Aj(x,∇u(x)) = Fju(x),

for almost all x ∈ Ω. Therefore, by Lebesgue’s theorem,
we obtain

‖Fjumk − Fju‖Lp′ (Ω,ω1) −→ 0,

that is,

Fjumk −→ Fju in Lp
′
(Ω, ω1).

Finally, in view to convergence principle in Banach
spaces, we have

Fjum −→ Fju in Lp
′
(Ω, ω1). (6)

Step 2:
For j = 1, ..., n, we define the operator

Gj : W 1,p
0 (Ω, ω1) −→ Lq

′
(Ω, ω2)

(Gju)(x) = Bj(x, u(x),∇u(x)).

We also have that the operator Gj is continuous and bounded.
In fact,

(i) Let u ∈ W 1,p
0 (Ω, ω1). Using (A2), Remark 3.1 and

Theorem 2.2(with θ = 1), we obtain

‖Gju‖q
′

Lq′ (Ω,ω2)
=

∫
Ω

|Bj(x, u,∇u)|q
′
ω2dx

≤
∫

Ω

(
K2 + h2|u|

q
q′ + h3|∇u|

q
q′
)q′

ω2dx

≤ Cq
∫

Ω

[
Kq′

2 + hq
′

2 |u|q + hq
′

3 |∇u|q
]
ω2dx

≤ Cq
[
‖K2‖q

′

Lq′ (Ω,ω2)
+ ‖h2‖q

′

L∞(Ω)‖u‖
q
Lq(Ω,ω2)

+‖h3‖q
′

L∞(Ω)‖∇u‖
q
Lq(Ω,ω2)

]
≤ Cq

[
‖K2‖q

′

Lq′ (Ω,ω2)
+ ‖h2‖q

′

L∞(Ω)C
q
p,q‖u‖

q
Lp(Ω,ω1)

+‖h3‖q
′

L∞(Ω)C
q
p,q‖∇u‖

q
Lp(Ω,ω1)

]
≤ Cq

[
‖K2‖q

′

Lq′ (Ω,ω2)
+ Cqp,q

(
‖h2‖q

′

L∞(Ω)

+‖h3‖q
′

L∞(Ω)

)
‖u‖q

W 1,p
0 (Ω,ω1)

]
,

where the constant Cq depends only on q.
(ii) Let um −→ u in W 1,p

0 (Ω, ω1) as m −→ ∞. We will
show that Gjum −→ Gju in Lq

′
(Ω, ω2).

According to (A2) and Remark 3.1, we obtain

‖Gjumk −Gju‖
q′

Lq′ (Ω,ω2)
=

∫
Ω

|Gjumk(x)−Gju(x)|q
′
ω2dx

≤
∫

Ω

(
|Bj(x, umk ,∇umk |+ |Bj(x, u,∇u)|

)q′
ω2dx

≤ Cq
∫

Ω

(
|Bj(x, umk ,∇umk)|q

′
+ |Bj(x, u,∇u)|q

′
)
ω2dx

≤ Cq
[∫

Ω

(
K2 + h2|umk |

q
q′ + h3|∇umk |

q
q′
)q′

ω2dx

+

∫
Ω

(
K2 + h2|u|

q
q′ + h3|∇u|

q
q′
)q′

ω2dx

]
≤ 2CqC

′

q

∫
Ω

(
Kq′

2 + hq
′

2 Φq1 + hq
′

3 Φq2

)
ω2dx

≤ 2CqC
′

q

[
‖K2‖q

′

Lq′ (Ω,ω2)
+ ‖h2‖q

′

L∞(Ω)‖Φ1‖qLq(Ω,ω2)

+‖h3‖q
′

L∞(Ω)‖Φ2‖qLq(Ω,ω2)

]
≤ 2CqC

′

q

[
‖K2‖q

′

Lq′ (Ω,ω2)
+ Cqp,q‖h2‖q

′

L∞(Ω)‖Φ1‖qLp(Ω,ω1)

+Cqp,q‖h3‖q
′

L∞(Ω)‖Φ2‖qLp(Ω,ω1)

]
.

Then, by (A1), we have, as k −→∞

Gjumk(x) −→ Gju(x), a.e. x ∈ Ω.

Therefore, in view to Lebesgue’s theorem, we have

‖Gjumk −Gju‖Lq′ (Ω,ω2) −→ 0,

that is,

Gjumk −→ Gju in Lq
′
(Ω, ω2).

Hence, from the convergence principle in Banach spaces,
we conclude that

Gjum −→ Gju in Lq
′
(Ω, ω2). (7)
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Step 3:
We define the operator

H : W 1,p
0 (Ω, ω1) −→ Lp

′
(Ω, ω1)

(Hu)(x) = g(x, u(x)).

In this step, we will show that the operator H is bounded and
continuous.

(i) Let u ∈W 1,p
0 (Ω, ω1). Using (A2), we obtain

‖Hu‖p
′

Lp′ (Ω,ω1)
=

∫
Ω

|g(x, u)|p
′
ω1dx

≤
∫

Ω

(
K4 + h6|u|

p
p′
)p′

ω1dx

≤ Cp
∫

Ω

(
Kp′

4 + hp
′

6 |u|p
)
ω1dx

≤ Cp
[
‖K4‖p

′

Lp′ (Ω,ω1)
+ ‖h6‖p

′

L∞(Ω)‖u‖
p
Lp(Ω,ω1)

]
≤ Cp

[
‖K3‖Lp′ (Ω,ω1) + ‖h6‖p

′

L∞(Ω)‖u‖
p

W 1,p
0 (Ω,ω1)

]
,

where the constant Cp depends only on p.
(ii) Let um −→ u in W 1,p

0 (Ω, ω1) as m −→∞. We need to
show that Hum −→ Hu in Lp

′
(Ω, ω1).

By (A2) , we get

‖Humk −Hu‖
p′

Lp′ (Ω,ω1)

=

∫
Ω

|Humk(x)− hu(x)|p
′
ω1dx

≤
∫

Ω

(|g(x, umk)|+ |g(x, u)|)p
′
ω1dx

≤ Cp
∫

Ω

(
|g(x, umk)|p

′
+ |g(x, u)|p

′
)
ω1dx

≤ Cp
∫

Ω

[
(K4 + h6|umk |

p
p′ )p

′
+ (K4 + h6|u|

p
p′ )p

′
]
ω1dx

≤ 2CpC
′
p

∫
Ω

(
Kp′

4 + hp
′

6 Φp1

)
ω1dx

≤ 2CpC
′
p

[
‖K4‖p

′

Lp′ (Ω,ω1)
+ ‖h6‖p

′

L∞(Ω)‖Φ1‖pLp(Ω,ω1)

]
,

then, using condition (H1), we deduce, as k −→∞

Humk(x)) −→ Hu(x), a.e. x ∈ Ω.

Therefore, by the Lebesgue’s theorem, we obtain

‖Humk −Hu‖Lp′ (Ω,ω1) −→ 0,

that is,

Humk −→ Hu in Lp
′
(Ω, ω1).

We conclude, from the convergence principle in Banach
spaces, that

Hum −→ Hu in Lp
′
(Ω, ω1). (8)

Step 4:
We define the operator

H̃ : W 1,p
0 (Ω, ω1) −→ Lq

′
(Ω, ω2)

(H̃u)(x) = H(x, u(x),∇u(x)).

We now show that the operator H̃ is bounded and contin-
uous.

(i) Let u ∈ W 1,p
0 (Ω, ω1). Using (A2) and Remaek 3.1, we

obtain

‖H̃u‖q
′

Lq′ (Ω,ω2)
=

∫
Ω

|H(x, u(x),∇u(x))|p
′
ω2dx

≤
∫

Ω

(
K3 + h4|u|

q
q′ + h5|∇u|

q
q′
)q′

ω2dx

≤ Cq
∫

Ω

[
Kq′

3 + hq
′

4 |u|q + hq
′

5 |∇u|q
]
ω2dx

≤ Cq
[
‖K3‖q

′

Lq′ (Ω,ω2)
+ ‖h4‖q

′

L∞(Ω)‖u‖
q
Lq(Ω,ω2)

+ ‖h5‖q
′

L∞(Ω)‖∇u‖
q
Lq(Ω,ω2)

]
≤ Cq

[
‖K3‖q

′

Lq′ (Ω,ω2)
+ ‖h4‖q

′

L∞(Ω)C
q
p,q‖u‖

q
Lp(Ω,ω1)

+ ‖h5‖q
′

L∞(Ω)C
q
p,q‖∇u‖

q
Lp(Ω,ω1)

]
≤ Cq

[
‖K3‖q

′

Lq′ (Ω,ω2)
+ Cqp,q

(
‖h4‖q

′

L∞(Ω)

+‖h5‖q
′

L∞(Ω)

)
‖u‖q

W 1,p
0 (Ω,ω1)

]
,

where the constant Cq depends only on q.
(ii) Let um −→ u in W 1,p

0 (Ω, ω1) as m −→∞. We need to
show that H̃um −→ H̃u in Lq

′
(Ω, ω2).

According to (A2) and Remark 3.1, we have

‖H̃umk − H̃u‖
q′

Lq′ (Ω,ω2)
=

∫
Ω

|H̃umk(x)− H̃u(x)|q
′
ω2dx

≤
∫

Ω

(
|H(x, umk ,∇umk)|+ |H(x, u,∇u)|

)q′
ω2dx

≤ Cq
∫

Ω

(
|H(x, umk ,∇umk)|q

′
+ |H(x, u,∇u)|q

′
)
ω2dx

≤ Cq
[∫

Ω

(
K3 + h4|umk |

q
q′ + h5|∇umk |

q
q′
)q′

ω2dx

+

∫
Ω

(
K3 + h4|u|

q
q′ + h5|∇u|

q
q′
)q′

ω2dx

]
≤ 2CqC

′

q

∫
Ω

(
Kq′

3 + hq
′

4 Φq1 + hq
′

5 Φq2

)
ω2dx

≤ 2CqC
′

q

[
‖K3‖q

′

Lq′ (Ω,ω2)
+ ‖h4‖q

′

L∞(Ω)‖Φ1‖qLq(Ω,ω2)

+ ‖h5‖q
′

L∞(Ω)‖Φ2‖qLq(Ω,ω2)

]
≤ 2CqC

′

q

[
‖K3‖q

′

Lq′ (Ω,ω2)
+ Cqp,q‖h4‖q

′

L∞(Ω)‖Φ1‖qLp(Ω,ω1)

+ Cqp,q‖h5‖q
′

L∞(Ω)‖Φ2‖qLp(Ω,ω1)

]
.

Hence, from (A1), we deduce, as k −→∞

H̃umk(x) −→ H̃u(x), a.e. x ∈ Ω.

Therefore, by the the Lebesgue’s theorem, we obtain

‖H̃umk − H̃u‖Lq′ (Ω,ω2) −→ 0,

that is,

H̃umk −→ H̃u in Lq
′
(Ω, ω2).

Thanks to convergence principle in Banach spaces, we
conclude that

H̃um −→ H̃u in Lq
′
(Ω, ω2). (9)

IJOA ©2021 7



International Journal on Optimization and Applications
IJOA. Vol. 1, Issue No. 2, Year 2021, www.usms.ac.ma/ijoa
Copyright ©2021 by International Journal on Optimization and Applications

Finally, let ϕ ∈ W 1,p
0 (Ω, ω1) and using Hölder inequality,

Theorem 2.2(with θ = 1) and Remark 3.1, we obtain

|B1(um, ϕ)− B1(u, ϕ)|

= |
∫

Ω

〈A(x,∇um)−A(x,∇u),∇ϕ〉ω1dx|

≤
n∑
j=1

∫
Ω

|Aj(x,∇um)−Aj(x,∇u)||Djϕ|ω1dx

=
n∑
j=1

∫
Ω

|Fjum − Fju||Djϕ|ω1dx

≤
n∑
j=1

‖Fjum − Fju‖Lp′ (Ω,ω1)‖Djϕ‖Lp(Ω,ω1)

≤

 n∑
j=1

‖Fjum − Fju‖Lp′ (Ω,ω1)

 ‖ϕ‖W 1,p
0 (Ω,ω1),

|B2(um, ϕ)− B2(u, ϕ)|

= |
∫

Ω

〈B(x, um,∇um)− B(x, u,∇u),∇ϕ〉ω2dx|

≤
n∑
j=1

∫
Ω

|Bj(x, um,∇um)− Bj(x, u,∇u)||Djϕ|ω2dx

=
n∑
j=1

∫
Ω

|Gjum −Gju||Djϕ|ω2dx

≤

 n∑
j=1

‖Gjum −Gju‖Lq′ (Ω,ω2)

 ‖∇ϕ‖Lq(Ω,ω2)

≤ Cp,q

 n∑
j=1

‖Gjum −Gju‖Lq′ (Ω,ω2)

 ‖∇ϕ‖Lp(Ω,ω1)

≤ Cp,q

 n∑
j=1

‖Gjum −Gju‖Lq′ (Ω,ω2)

 ‖ϕ‖W 1,p
0 (Ω,ω1),

|B3(um, ϕ)− B3(u, ϕ)|

≤
∫

Ω

|g(x, um)− g(x, u)||ϕ|ω1dx

=

∫
Ω

|Hum −Hu||ϕ|ω1dx

≤ ‖Hum −Hu‖Lp′ (Ω,ω1)‖ϕ‖Lp(Ω,ω1)

≤ ‖Hum −Hu‖Lp′ (Ω,ω1)‖ϕ‖W 1,p
0 (Ω,ω1),

and

|B4(um, ϕ)− B4(u, ϕ)|

≤
∫

Ω

|H(x, um,∇um)−H(x, u,∇u)||ϕ|ω2dx

=

∫
Ω

|H̃um − H̃u||ϕ|ω2dx

≤ ‖H̃um − H̃u‖Lq′ (Ω,ω2)‖ϕ‖Lq(Ω,ω2)

≤ Cp,q‖H̃um − H̃u‖Lq′ (Ω,ω2)‖ϕ‖W 1,p
0 (Ω,ω1).

Hence, for all ϕ ∈W 1,p
0 (Ω, ω1), we have

|B(um, ϕ)− B(u, ϕ)|
≤ |B1(um, ϕ)− B1(u, ϕ)|+ |B2(um, ϕ)− B2(u, ϕ)|

+|B3(um, ϕ)− B3(u, ϕ)|+ |B4(um, ϕ)− B4(u, ϕ)|

≤
[ n∑
j=1

(
‖Fjum − Fju‖Lp′ (Ω,ω1) + Cp,q‖Gjum −Gju‖Lq′ (Ω,ω2)

)
+‖Hum −Hu‖Lp′ (Ω,ω1) + Cp,q‖H̃um − H̃u‖Lq′ (Ω,ω2)

]
‖ϕ‖W 1,p

0 (Ω,ω1).

Then, we get

‖Aum − Au‖∗

≤
n∑
j=1

(
‖Fjum − Fju‖Lp′ (Ω,ω1) + Cp,q‖Gjum −Gju‖Lq′ (Ω,ω2)

)
+‖Hum −Hu‖Lp′ (Ω,ω1) + Cp,q‖H̃um − H̃u‖Lq′ (Ω,ω2).

Combining (6), (7), (8) and (9), we deduce that

‖Aum − Au‖∗ −→ 0 as m −→∞,

that is, A is continuous.
Hence, the proof of the theorem 4.1 is completed.

V. EXAMPLE

Let Ω = {(x, y) ∈ R2 : x2 + y2 < 1}, and consider the
weight functions ω1(x, y) =

(
x2 + y2

)−1/2
and ω2(x, y) =(

x2 + y2
)−1/3

(
we have that ω1, ω2 ∈ A4, p = 4 and q = 3

)
,

and the functions Bj : Ω×R×R2 −→ R, Aj : Ω×R2 −→ R
(j = 1, 2), g : Ω × R× −→ R and H : Ω × R × R2 −→ R
defined by

Aj((x, y), ξ) = h1(x, y)ξ3
j ,

where h1(x, y) = 2e(x2+y2),

Bj((x, y), η, ξ) = h3(x, y)|ξj |ξj ,

where h3(x, y) = 2 + sin(x2 + y2),

g((x, y), η) = h6(x, y)|η|3sgn(η),

where h6(x, y) = 2− sin2(x+ y), and

H((x, y), η, ξ) = h5(x, y)ξ2sgn(η),

where h5(x, y) = 2− cos2(xy).
Let us consider the partial differential operator

Lu(x) = −div
[
ω1(x)A(x,∇u(x)) + ω2(x)B(x, u(x),∇u(x))

]
+ ω1(x)g(x, u(x)) + ω2(x)H(x, u(x),∇u(x)),

(10)

Therefore, by Theorem 4.1, the problem{
Lu(x, y) = cos(xy)

(x2+y2) −
∂
∂x

(
sin(xy)
(x2+y2)

)
− ∂

∂y

(
sin(xy)
(x2+y2)

)
in Ω,

u(x, y) = 0 on ∂Ω,

admits one and only solution u ∈W 1,4
0 (Ω, ω1).
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Abstract— 

In the prospect of doing a set of decision support onboards in 

a public university, we will present a comparison of two ETL 
extraction based in a production databases of students' 

information. For the deployment, we use Pentaho and Sql 

Server Tools and we demonstrate the application on the case 

of Sultan Moulay Slimane University in Beni Mellal, 

Morocco 

Keywords—: Pentaho; Sql Server; Data Warehouse; 
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I. INTRODUCTION

Data warehouse (DWs) is delineated as "subject-oriented, 
more integrated, timely-variant, and non-volatile collection of 

data to support the management decision process" [1]. Data 

warehouse emphasizes the collection of data from multiple 

sources for useful analysis. 

At the center of DWs is the extraction-transformation-loading 

(ETL) process. ETL is a process utilized to extract data from 

multiple sources, transform that data to the desired state 

through cleansing, and load it into a target database. The 

deliverable is used to generate reports and for analysis. ETL 

consumes up to 70% of all the resources [2-5]. 

In the most professional field, the main approach before 

selecting an ETL tool is to perform proofs of concept. 

However, it is almost impossible to perform proofs of concept 

of all ETL tools available on the market. Then a pre-selection 

is made in the way that two ETL suites are kept for testing. 

This pre-selection is generally based on criteria summarized 
as follows: the category of the tool, the cost, the type of ETL 

project, and the proof of concepts. 

In this white paper, we will only look at the use of two ETL 
tools (Microsoft SQL Server Integration Services SSIS and 

Pentaho Kettle) [6] based on the generalized criteria for 
selecting the better tool. 

II. RELATED WORK

In the recent years, a number of different approaches have 
been suggested for the design, optimization, and automation 
of ETL operations. In this section, we present a brief overview 
of these several approaches [7]. Some of the leading data 
integration vendors are IBM, Informatica, Oracle, Microsoft, 
Talend, Pentaho, Information Builders, etc. 

There are many available research papers that offer a 
comparative view of the leading ETL tools in the market, such 
as [8-9]. They analyze in details the functionalities and 
features offered by these tools, and it can be deduced that all 
of them provide support for all the features that define data 
integration tools. 

Different variants of some approaches for integration of 
ETL tools with data warehouses have been proposes. Shaker 
H. Ali ElSappagh tries to navigate through the efforts that 
have been made to use acronyms for ETL, DW, DM, OLAP, 
Ion-line analytical processing.A data warehouse gives a set of 
numerical values based on a set of input values in the form of 
dimensions [10]. Li, Jain, overcame the limitations of the 
traditional architecture of Extract, Transform, Load tools, and 
developed a three-layer architecture based on metadata. This 
made the ETL process more flexible, versatile and efficient, 
and finally they designed and implemented a new ETL tool 
for the drilling data warehouse [11]. A systematic review 
method was proposed to identify, extract, and analyze the 
main proposals for modeling the conceptual ETL process for 
data warehouse. The main proposals were identified and 
compared based on the characteristics, activities, and notation 
of ETL processes, and the study was concluded by reflecting 
on the studied approaches and providing an update skeleton 
for future studies. 
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III. FEATURE COMPARISON BEWEEN PDI AND SSIS

In this section, we are going to do a comparative study of 
the features for the two extraction tools, especially the Pentaho 
Data Integration and the Microsoft SQL Server Integration 
Services 

A. Access to data 

Table 1. Access to data 
features PDI SSIS 

Read the full table  




MOMS x 



Index  



POP  



We note for the triggering process by message, the 

PDI tool is not suitable for this procedure, whereas for the 

trigger by type of polling the two tools are robust. 

Oracle is the only database that supports JMS natively in the 

Complete view of 
reading 

Calling stored 
procedure 

Uploading clause 
where/order by 

form of Oracle Advanced Queueing. If the message receiver 

is not tookeen on thisJMS implementation, it is usually 

possible to find some sort of messaging bridge that will 
  transform   and    forward    messages    from    one    JMS 

implementation to another. 

 

C. Data processing 

Query  



Query Builder  



 

Reading / writing all 
simple and complex 

data types 

 
Table 3. Data processing 

Features PDI SSIS 

Transformation  

functions of dates and 

numbers 

Statistical functions x 

qualities 

Read the full table  



CSV  



Fixed / Limited  



XML  



Excel  



Validity flat files x 



Validity of XML files  



For the access to relational data, flat files and applications 
of connectors, PDI and SSIS are good solutions for 
thesefeatures.The two tools allow the analysis of data from 
various sources to determine the transformations necessary to 
perform aggregations, data deletions, automatic corrections of 
errors, etc.But for the validation of the flat files, the SSIS tool 
is more robust in comparaison to PDI. 

B. Triggering pocess 

Table 2. Triggering process 
features PDI SSIS 

CORBA x 

Allows transcoding with x 

a reference table 

Heterogeneous joints x 



Supported modes of joint external 



Management of nested x 

queries 

Treatment options for a  

programming language 

Added new  

transformations and 

business processes 

Mapping graphics  



Drag and Drop  



Graphical representation  

of flow 

Viewing under x 

development data 

Impact analyses tools  



Debugging Tools  



Generation of technical x 

and functional 

documentation 

Viewing documentation x 

through the web 

XML RPC x 



JMC x x 

Management of 

integration errors 
For some 

steps 

 
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The two tools provide a mechanism of query directly 

in SQL which allows to make all modes of joint and nested 

queries.It ispossible with SQL Server to join data from an 

active directory to data in a SQL Server and create a view of 

the joined data. For the treatment of the data, the two tools are 
not compatible for the transformations and calculations by 

default, they are recommended for the manual transformations 

except for the generation of technical and functional 

documents. 

D. Advanced development and deployment/production start 

Table 4.Advanced development and deployment/production 

start 
Features PDI SSIS 

Use of rights of a x x 
directory 

DBMS 
Security type security 

which 

contains the 

repository 
Security scenario  

creation 

Security access to  

metadata 

Safety manual task  

launch 

Security Administration  

Console 

Application  

Programming 

Interface 

Integration of  

external functions 

Crash recovery x x 
mechanism 

Setting buffers /  

indexes / caches 

Team Development  

Management 

Versioning x 

We note that the PDI is not compatible for the 

generation of specific log, the interfacage with Tools of 

Supervision, the planning of integrated treatment and for the 

security of the database management system that does not 

contain the repository. 

IV. COMPARATIVE TREATMENT TIMES

A. Test realization methodology 

Test n° 

Compilation 

treatments 
x Yes for C# Descriptive 

1. Extracting data from an Excel file

Type into 

production 
Windows or 

Unix 
command 

line 

Windows 
command 

line 

2. Loading data into another Excelfile

3. The input file contains 5 typed fields:

 COD_IND [NUMBER] (Student Code)

 COD_NNE_IND [NUMBER] (National
History x x 

visualization into 

production 

It was found that the two tools are not compatible for 

the recovery mechanism on incident and for the history 

visualization into production,but generally they are used for 

the other properties of the advanced development and 

deployment of production setting. 

E. Administration and security management 

Table 5.Administration and security management 
Features PDI SSIS 

Administration Console  

ID of the student)

 DATE_NAI_IND [DATE] (Date of birth

of the student)

 LIB_NOM_PAT_IND [String] (Family

name of student)

 LIB_PR_IND [String] (Student's first 

name)

B. Modeling in Pentaho Data Integration (PDI) [8]. [9]. 

Automated log  

management 

Specific log generation x 



Interfacing with 

monitoring tools 

Integrated treatment 

planning tool 

x 



x 
Fig. 1: Extraction of 1000 rows with PDI 
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C. Modeling in SQL Server Integration Services 

(SSIS)[10]. 

Fig. 2: Extraction of 1000 rows with SSIS 

We performed the same work for 5000 and 10000 rows. 

Table 6.Processing time for both tools 
Number of rows PDI SSIS 

data flow and event driven architecture. It allows great 

flexibility to the developer to design the structure and flow the 

ETL process.On the other side, PDI includes many more 

options to access outside data such as a Google Analytics and 

several options to access Web services. It can be used on either 
Windows or Linux operating systems. 

The choice between the SSIS ETL and PDI thus 

depends essentially on the typology of the project it leads. 
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The performance of the treatment of time is an important 

criterion in the choice of an ETL, but from these results we cannot 
prejudge the actual performance in a production environment, since 

time of execution variesfollowing the typology of treatments. 

At the end of our comparative study, we can conclude that 

SSIS and PDI are two tools of ETL with their own 

specificities.These are real alternatives to the ETL owners as 

Informatica Power Centeror Oracle Warehouse Builder.These two 

tools offer all the features necessary for an ETL. 

V. 5. CONCLUSION

Both SSIS and PDI are robust solutions to perform 

ETL in a data warehouse. SSIS emphasizes configuration over 
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material are the lowering of the potentials at which charge 
transfer processes occur, the enhancement of the rele vant 

Abstract— The monitoring of the cathecol level is clinically 
important. In this work a novel C/Ag/SiO2 Sonogel-Carbon 

electrode was used for the sensitive voltametric determination 

of cathecolamine. A complete characterization of the electrodes 

has been performed using scanning electron microscopy, 

Raman spectroscopy, cyclic voltammetry, and impedance 

spectroscopy. the novel electrode has shown an increase in the 

effective area of up to 70%, oxidation peaks and an excellent 

electrocatalytic activity. The electrochemical response 

characteristics were investigated by cyclic and differential pulse 

voltammetry, the limit of detection is estimated to be in the sub 

micromolar regime. 

statistical analysis of measurements performed in water 

samples has led to good apparent recovery. 

Keywords— The statistical analysis, C/Ag/SiO2 Sonogel- 

Carbon electrode. Amperometric sensor. Cathecol. 

I. INTRODUCTION

The application of sensors for clinical measurement are 
well recognised in the last ten years. In this work a C/Ag/SiO2 
Sonogel-Carbon electrode is used for the sensitive pulse 
voltammetry determination of cathecol. The proper choice of 
the sensing material, in view of the specific application, is 
fundamental since it can impart to the device definite 
physicochemical properties and analytical peculiarities. The 
main advantages sought by adopting a specific electrode 

current and the prevention of the passivation of the surface. 
The results of this paper have shown an analytical 
performance and an efficient catalytic activity of the electrode 
for the electro-oxidation of cathecol. The advantage of 
functional materials as an immobilization matrix for sensors 
is due to high surface to volume ratio, the presence of reactive 
groups on the surface, and fast electron transfer kinetics [1]. 
In recent years, nanostructured materials gained a very 
important role in the development of amperometric sensors 
[2]. The high superficial area/volume ratio and the polyhedral 
shape induce a quite high number of defects to be present at 
the electrode surface, imparting to the material high reactivity 
toward species in solution, suitable for the realization of 
electrocatalytic processes [3]. The result of our proposed 
modified electrode as compared to other electrochemical 
methods reported in the literature [4,8] exhibit that our 
electrochemical sensor Seems to be very promising and they 
can be considered for quantification of cathecol. 
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This work 

Scheme 1. Procedure for depositing silver nanoparticles on 

silica spheres: 

1. TEOS, 2. ethanol, 3. ammonia, 4. water, and 5. Ag NPs.

III. RESULTS AND DISCUSSION

A. Surface and Electrochemical characterization of 

modified electrodes 

II. EXPERIMENTAL

A. Reagents and materials 

Cathecol reagent grade ≥98% (HPLC) is purchased from 
Sigma Aldrich (USA). KH2PO4, K2HPO4 for phosphate 
buffer and graphite powder (<20 microns) were purchased 
from Fluka. Paraffin oil was purchased from a pharmacy. All 
other chemicals were of reagent grade and used directly 
without further purification. Plastic capillary tubes, i.d. 2mm, 
were used as the bodies for the composite electrodes. 
Solutions were prepared using deionized double-distilled 
water with a measured resistance higher than 15 μS cm−1. 

B. Instrumentation 

The cyclic voltammetry (CV), differential pulse 
voltammetry (DPV) and electrochemical impedance (EI) were 
applied to study the behaviour of C/Ag/SiO2 Sonogel-Carbon 
electrode. They were all performed with a Voltalab®40, type 
PGZ301 from Radiometer (France). A conventional three- 
electrode cell (20 mL) was used at room temperature (25± 
1°C), the counter electrode was a platinum wire and an SCE, 
3M KCl electrode was used as the reference, the C/Ag/SiO2 
electrodes were used as working electrode. The scanning 
electron microscope (SEM) image was obtained using a 
HITACHI X-650 SEM instrument. The statistical validation 
was carried out by the MATLAB statistical software. 

C. Preparation of the C/Ag/SiO2 Sonogel-Carbon electrode 

To prepare the C/Ag/SiO2, the following procedure was 
used: 0.1g of silver nanoparticles silica Ag/SiO2 (Scheme 1) 
is dispersed in 0.5 M acetic acid solution, then 1g of Carbon 
graphite powder was dispersed in the solution until obtaining 
a unique phase, and then the mixture was heated at 120°C to 
evaporate the acetic acid and water. In the next step, the 
carbon powder modified with Ag/SiO2, is dried and was 
mixed thoroughly in a mortar with 40% of paraffin oil until 
obtaining a homogenous paste. Thus, the plastic capillaries 
were filled, leaving a little extra mixture sticking out of the 
tube to facilitate the subsequent polishing. For establishing 
electrical contact, a copper wire was inserted into the 
capillary. Before usage the electrodes were polished with 
emery paper No1500, and were electrochemically cleaned by 
cyclic voltammetry until obtaining a stable cyclic 
voltammograms between -0,80 and 1,50 V in 0,005 mol.L-1 
KCl.

Scanning microscopy (SEM) was used to explore the difference 
in structure between films of carbon paste alone, and those of 
carbon paste in the presence of SiO2 (C / SiO2), and mixed 
compound of SiO2 and Ag (C / SiO2 / Ag). 

Analysis of the surface of the carbon-only paste electrode 
shows a granular structure of carbon. However, the 
incorporation of SiO2 into the carbon paste shows a more 
structured surface (cauliflower-shaped) with the appearance 
of bright white particles. An even better organized 
morphology, when silver is added (C / Ag / SiO2 electrode), 
is noted, corresponding to the C paste modified by silica-silver 
nanoparticles. In this case, the film generated shows a better 
organization and an oriented structure as well as an increase 
in the specific surface (Figure 1). The presence of SiO2 and 
Ag in the carbon paste therefore seems to have a favorable 
effect on the structure of the materials prepared. 

Figure 1. (A) SEM images obtained for C electrode. (B) 

SEM images obtained for C/SiO2 modified electrode. (C) 

SEM images obtained for C/Ag/SiO2 modified electrode 

To characterize the interface features of the modified 

electrode surface we have used the EIS method. The Figure 2 

shows that the charge transfer resistance of C/Ag/Si O2 

electrode is much smaller than that of C/Si O2 electrode and 

the C electrode, suggesting that it is easier to transfer electrons 

at C/Ag/SiO2, and this indicates that the incorporation of silver 

nanoparticles on silica spheres promote the electron transfer 

synergistically and accelerates the diffusion of ferricyanide 

towards the modified electrode surface. 

The active surface area of the modified electrode was 

estimated according to the slope of the ip versus v1/2 plot, 

based on the Randles–Sevcik equation [9,10]: 

Lp = 2.69 × 105 n3/2 Aeff D1/2 C υ 1/2 
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Where Aeff is the effective surface area, n is the number of 

electrons transferred, D (= 7.6 × 10−6 cm2 s−1) is the diffusion 

coefficient of potassium ferricyanide (Gooding et al., 1998), 

and C are the concentration of potassium ferricyanide. The 

effective electrode area for C/Ag/SiO2 modified electrode is 

approximately 0.058 cm2 whereas 0.037cm2 for C/SiO2 and 

0.032cm2 for C electrode. 

Figure 2. Nyquist plots of EIS in 10-2 M potassium 

ferricyanide prepared in 0.05 M KCl for C/Ag/SiO2 electrode 

and C/SiO2 electrode and Carbon electrode, Amplitude: 5 

mV; frequency range: 100 kHz–10 mHz; potential: 0V. 

B. Electrochemical Behaviour of cathecol at the Modified 

Electrode Use an unique style for units. 

Figure 3. (A) cyclic voltammetry of 10-5M of cathecol at 
C/Ag/SiO2 electrode and C/SiO2 electrode and Carbon 
electrode in PBS (0.05M), pH = 2, T = 25 ° C. (B) Cyclic 
voltammograms obtained at different scan rates from the 

C/Ag/SiO2 modified electrode in a PBS at pH 2 containing 2 
μM of cathecol. Scan rates: 40, 60, 80,100, 120, 140,160 and 
180 mV/s, (C) Nyquist plots of 10-5M of cathecol at C/Ag/SiO2

electrode and C/SiO2 electrode and Carbon electrode in PBS 
(0.05M), pH = 2, T = 25 ° C. 

The Figure 3.A, shows the electrochemical behaviour of the 

cathecol at C/Ag/SiO2 electrode and C/SiO2 electrode and 

Carbon electrode in PBS pH 2 using CV; First, the cathecol 

(pKa =9,5) presents an electroactive character that appears 

with an oxidation peak in the studied potential ranges 

(Tables.1), also we noticed the appearance of Epa peak 

corresponding to the oxidation of Ag incorporated in the 

paste of the modified electrode at 100 (mV)/ECS. The 

relationship between the oxidation peak current (ipa) and the 

square root of the scan rate (ν1/2) (Figure 3.B) is linear with 

linear correlation coefficients R = 0,9974, indicates that the 

electrochemical process is controlled by diffusion. 

The (Figure 3.C), shows the Nyquist plots behaviour of the 

cathecol at C/Ag/SiO2 electrode and C/SiO2 electrode and 

Carbon electrode in PBS pH 2, the (Tables.2) presents the 

charge transfer resistance and the capacitance of the electrical 

layer at the electrode/solution interface, and the apparent rate 

of electron transfer at different modified electrodes. 

Electrod 

e 

Ipa 

(µA/cm 

2) 

Ipc

(µA/cm 

2) 

Ipa/ 

Ipc

Epa 

(mV)/EC 

S 

Epc

(mV)/EC 

S 

∆Ep 

(mV)/EC 

S 

Carbon 

electrode 

263.513 - 

136.987 

1.9 

2 

592 138 454 

C/SiO2 

electrode 

254.479 -147..27 1.7 

2 

570 178 392 

C/Ag/Si 373.19 - 1.8 506 200 306 

O2 203.091 3 

electrode 

Tables.1 Electrochemical characterization of cathecol on 

three types of electrodes 

B 

A 

C 
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Electrode Rtc 

(kohm .cm2) 

Cdc

(µf/cm2) 

Kapp 

(cm /s) 

Carbon electrode 17.04 10.45 1.56.10-5

C/SiO2 electrode 7.239 19.69 3.68.10-5

C/Ag/SiO2 

electrode 

1.507 23.65 1.77.10-4

Tables.2 the electrical parameters of the three types of 

electrodes 

From the table (Tables.2) we notice that the charge transfer 

resistance (Rtc) decreases for the Ag / SiO2 carbon paste 

electrode, a remarkable increase in the capacitance of the 

electric layer (Cdc) and an apparent speed increase of the 

electron transfer These results show the efficiency of Ag / 

SiO2 carbon modified electrode. 

Given the results obtained in Figure 3 and Tables 1 and 2, 

the presence of SiO2 and Ag in the carbon paste therefore 

seems to have a favorable effect on the structure of the 

materials prepared. The modified electrode should promote 

the sensitivity and the selectivity of determination cathecol. 

As a result, C/Ag/SiO2 can accelerate the electron transfer 

and decrease the overpotentials of cathecol oxidation at 

different levels of difusion modes, which is the key factor to 

adjust the problem of adsorptionat the electrod surface and 

realize determination directe of cathecol. 

3.3. Analytical Calibration Curves of determinations of 

cathecol. 

The DPV was used to obtain the calibration curve of cathecol 

at the modified electrode in PBS pH2. the result in Figure 4 

shows the linear relationship between the oxidation peak 

current and cathecol concentrations. The peaks intensities are 

increased linearly in the range of 1–120 μM, the equation is 

Ipa (μA) = 0.3 C + 0.5 with a correlation coefficient of R² = 

0,9992 and the detection limit (S/N = 3) estimated to be 0.01 

μM in terms of signal to noise ratio of 3:1. 

Figure 4. Calibration plots of cathecol (from 1 to 120 

µmol L−1) 

3.4 Determination of cathecol at C/Ag/SiO2 in Urine. 

The objective of this study is the simultaneous detection 

of the cathecol in the presence of AA and AU in the 

urine. In this context, and in order to evaluate the 

applicability of the proposed method for the 

determination of the cathecol and AA and AU in urine, 

the measurements were conducted in urine samples 

diluted 500% (with 0,05M PBS at pH 2) was then added 

to this mixture a deferred reports of AA, AU and cathecol 

(table 4). 

the AA and UA is the principal organic constituents of 

urine, the phenomenon of interference on the 

electrochemical response of cathecol in the presence of 

the urinary AA and UA is one of the major problems that 

hinders electrochemical detection of its substances in 

biological media, since the unmodified carbon electrode 

could not separate cathecol and AA and UA oxidation 

peaks. The development of a simple and inexpensive 

device for the simultaneous determination and separation 

of the electrochemical responses of these substances 

remains the challenge of this work. 

The Tables.4 shows that the peak currents for cathecol 

increase linearly with increases their respective 

concentrations, without considerable effects on the other 

peak currents of AA and UA while varying the 

concentration of cathecol from 10 to 100 µmol L−1. 

In addition, a various concentrations of AA from 20 to 

100 µmol L−1 in the presence of cathecol and UA exhibit 

excellent responses to AA, AU, and cathecol without 

any obvious intermolecular effects among them, the peak 

current of AA increased linearly with increased 

concentration. is also indicated that the peak current of 

UA increased linearly with increases concentration of 

UA, without considerable effects on the other peak 

currents while varying the concentration of UA from 30 

to 40 µmol L−1. 

These results confirm that the oxidation processes of 

cathecol, AA, UA at C/Ag/SiO2 electrode are 

independent from each other, this separation allows a 

simultaneous determination of AA, UA and cathecol in 

a mixture. The C/Ag/SiO2 possessed a higher active 

surface area and can separate cathecol and AA and UA 

oxidation peaks. 
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Table 3: 

Simultaneous determination of cathecol, AA and UA in mixtures synthesis samples (±SD; the standard deviation for n=3). 

Sample 
Added (µmol/L) Found (µmol/L) Recovery (%) 

CATHECOL AU AA CATHECOL AU AA CATHECOL AU AA 

1 10 30 20 9.86±0.2 31±1.5 19.6±0.5 98.0% 103.3% 98.0% 

2 30 40 40 28.4±1.3 41±2.7 38.3±1.5 94.7% 102.5% 95.8% 

3 70 35 80 68.47±1.8 33.2±0.8 78.2±2.1 97.8% 100.6% 97.8% 

4 100 40 100 98.5±1.7 40.3±1.3 98.7±1.2 98.5% 100.8% 98.7% 

The feasibility of the C/Ag/SiO2 sensor is demonstrated for 

analytical application, the recovery test was performed by the 

standard addition method (Table 3), with 4 different additions 

of cathecol, AA and UA to the urine diluted samples, the 

obtained recoveries ranged from 94.7 to 98.5 for cathecol; 

95.8 to 98,7 for AA and 100,6 to 103,3 for UA. This high 

recovery and the perfect selectivity exerted by our C/Ag/SiO2 

electrochemical sensor looks very promising for the 

simultaneous detection of cathecol, AA and AU. So, an 

effective sensor has been obtained for cathecol determination 

in urine sample in this work. 

C. Conclusions 

The use of electrochemical techniques for the sensitive and 

selective determination of cathecol in urine by differential 

pulse voltammetry using C/Ag/SiO2 modified electrode was 

shows that the C/Ag/SiO2 modified electrode present a 

perfect selectivity on the detection of the cathecol in presence 

of AA and UA in 0,05M PBS at pH 2, with a detection limit 

0,01 µmol L-1 is obtained. This selectivity is maintained when 

the study is conducted in biological fluids such as in urine 

diluted 500% with 0,05M PBS at pH 2. Indeed, the results 

obtained were validated by the statistical validation methods 

and our electrochemical sensor looks very promising and they 

can be considered for early quantification of cathecol in 

clinical preparations. 
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Abstract—IJOA Journal 

Nowadays, Companies are carrying heavier and heavier loads than before, 

considering the market requirement, competitors who have become more 

numerous in almost all sectors of activity, and above all more creative and 

stronger  on  several   fronts:   marketing,   marketing,   productivity   ...  

To win in the market, strong companies must have a strong management 

system that helps them optimize their costs and differentiate themselves from 

others to ensure a comfortable margin 

This article reviews the critical optimization problem that can make this 

difference. This article will also present the different possible scenarios to 

optimize the significant costs of a company by proposing to opt for renewable 

energies. 

A number of optimization tools will be discussed and analyzed in this article. 

Keywords— Renewable energy, optimization, supply chain 

I. INTRODUCTION

Nowadays, Companies are carrying heavier and heavier costs 

than before, there are some who spend more money on 

marketing to market their products and achieve their 

objectives in Turnover, others prefer to invest in margin to 

have a competitive price compared to competitors ... 

The methods to achieve the gain objective are known by 

almost all companies, in terms of product marketing for 

commercial companies, or to have a competitive cost price 

for production companies, or a cost of storage or low 

transportation for Logistics Company…[1] 

on the other hand they all undergo very heavy loads which 

makes them lose all the gain which they had in their activities. 

The purpose of this article is to propose solutions to optimize 

part of the business expenses: energy expenses. 

According to the economist, energy consumption increased 

by +4.5 at the end of 2017, after + 1.9% at the end of 2016. 

According to the same newspaper, an increase of + 7.9% 

came from energy addressed to the national productive sector 

and + 3% concerning low voltage energy addressed mainly to 

households. In addition, the consumption of electricity went 

from 12,453 GWH to 37,446 GWH from 1998 to 2018. 
This increase reflects the dynamism of our country both 

economically and socially. And therefore; other solutions are 

needed to allow businesses to be more profitable. 

II. SOLAR ENERGY

Our kingdom is one of the sunny countries most of the year, 

even in winter, something that cannot be found in the most 

developed countries in Europe. 

Moreover, the construction of several solar power plants in 

the various regions of Morocco provides for the realization of 

additional solar capacity for the years to come. 

Furthermore, solar energy has become the choice of a 

Moroccan population that can be  considered  important, 

but we don’t see companies that opt for this solution to reduce 

the electricity bill when their consumption far exceeds that of 

houses.[2] 

According to the economist: “The Noor Midelt I project, 

awarded to the EDF Renouvelables, Masdar and Green of 

Africa consortium, should enable Ma¬roc to move from 3rd 

to 2nd place in the world CSP market This plant will have an 

installed capacity of 800 MW, almost the equivalent of that of 

a     conventional     nuclear      reactor      (1,000      MW). 
It will have to feed 1.19 million inhabitants and produce a 

kwh at 0.68 DH. For the period 2019-2023, the equipment 
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plan provides for the realization of an additional solar 

capacity of 2,015 MW (120 Noor PV Tafilalt in 2019, 200 

MW Noor PV Atlas in 2020, 200 MW in Koudia Baida in 

2023, 300 MW to be carried out in 2023 under the law 13- 

09)”[3] 

III. BIOMASS

On the other hand, all the companies that have organic waste 

can use this waste to proscribe energy, citing all the food, 

cardboard and paper companies, mass distribution like 

hypermarkets and supermarkets 

Biomass, this energy source not yet exploited in Morocco, 

and which can save the costs of the energy company by 

exploiting its waste 

2.1 definition of recycling 

Waste recycling is the direct reintroduction of a waste into 

the production cycle from which it comes, this means that the 

waste is transformed into a raw material which will be used 

to produce new consumer goods while avoiding to draw 

resources from the planet. 

These wastes can be used to produce energy, including 

methanization, 

this technology based on degradation by microorganisms of 
organic matter, under controlled conditions and in the 
absence of oxygen, this degradation causes: 

 Digestate : a moist product, rich in partially

stabilized organic matter

 Biogaz: gas mixture saturated with water at the

outlet of the digester and composed of

approximately 50% to 70% methane (CH4), 20% to

50% carbon dioxide (CO2) and some trace gases 

(NH3, N2, H2S) 

2.2 advantages of recycling 

this anaerobic digestion produces a double valuation of 

organic matter and energy, this is the specific interest in 

anaerobic digestion, compared to other sectors, 

decreases the amount of waste, 

also allows a reduction in greenhouse gas emissions by 
replacing the use of fossil fuels or chemical fertilizers 

and can treat greasy or very wet organic waste. [4] 

3.2 Agreed enterprise and biomass plant 

The idea is to question the possibility that a business 

could benefit from energy from its own waste; have an 

agreement so that each company that gives its waste to a 

biomass power plant benefits from energy according to 

the weight of the waste [5] 
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Abstract—In this paper, we study the existence of solutions for
the following fractional hybrid differential equations involving
Riemann-Liouville differential operators of order 1 < α ≤ 2. An
existence theorem for fractional hybrid differential equations is
proved under mixed Lipschitz and Carathéodory conditions and
using the Dhage point fixe theorem.

Index Terms—Fractional, Riemann, Hybrid

I. INTRODUCTION

During the past decades, fractional differential equations
have attracted many authors [1], [4], [5], [7], [8], [9], [10],
[11]. The differential equations involving fractional derivatives
in time, compared with those of integer order in time, are
more realistic to describe many phenomena in nature (for
instance, to describe the memory and hereditary properties of
various materials and processes), the study of such equations
has become an object of extensive study during recent years.

The quadratic perturbations of nonlinear differential equa-
tions have attracted much attention. We call such fractional
hybrid differential equations. There have been many works o
n the theory of hybrid differential equations, and we refer the
readers to the articles [2], [3], [4], [5], [6], [7].

Dhage and Lakshmikantham [3] discussed the following
first order hybrid differential equation

d

dt

[
x(t)

f(t, x(t))

]
= g(t, x(t)) a.e t ∈ J = [0, 1],

x(t0) = x0,

(1)

where f ∈ C1(J × R,R\{0}) and g ∈ Car(J × R,R).
(Car(J×R,R) is called the Carathéodory class of functions).

They established the existence, uniqueness results and some
fundamental differential inequalities for hybrid differential

equations initiating the study of theory of such systems and
proved utilizing the theory of inequalities, its existence of
extremal solutions and a comparaison results.

Zhao, Sun, Han and Li [11] have discussed the following
fractional hybrid differential equations involving Riemann-
Liouville differential operatorsDα

R

[ x(t)

f(t, x(t))

]
= g(t, x(t)) a.e t ∈ J = [0, T ],

x(0) = 0 ,
(2)

where f ∈ C1(J × R,R\{0}) and g ∈ Car(J × R,R) .
The authors of [11] established the existence theorem for

fractional hybrid differential equation and some fundamental
differential inequalities. They also established the existence of
extremal solutions.

Hilal and Kajouni [5] studied boundary fractional hybrid
differential equations involving Caputo differential operators
of order 0 < α < 1
Dα
C

[ x(t)

f(t, x(t))

]
= g(t, x(t)) a.e t ∈ J = [0, T ],

a
x(0)

f(0, x(0))
+ b

x(T )

f(T, x(T ))
= c,

(3)

where f ∈ C1(J×R,R\{0}) and g ∈ Car(J×R,R) and a, b,
c are real constants with a+ b 6= 0. They proved the existence
result for boundary fractional hybrid differential equations
under mixed Lipschitz and Carathéodory conditions. Some
fundamental fractional differential inequalities are also estab-
lished which are utilized to prove the existence of extremal
solutions. Necessary tools are considered and the comparaison
principle is proved which will be useful for further study of
qualitative behavior of solutions.
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In this paper we consider the fractional hybrid differential
equations with involving Riemann -Liouville differential op-
erators of order 1 < α ≤ 2Dα

R

[ x(t)

f(t, Bx(t))

]
= g(t, Bx(t)) a.e 0 ≤ t < 1,

x(1) = x′(1) = 0,
(4)

where f ∈ C1(J × R,R\{0}), g ∈ Car(J × R,R).
The term Bx(t) is given by: Bx(t) :=

∫ t
0
K(t, s)x(s)ds where

K ∈ C(D,R+), the set of all positive functions which are
continuous on D := {(t, s) ∈ R2/0 ≤ s ≤ t ≤ T} and

B∗ = sup
t∈[0,1]

∫ t

0

K(t, s)ds <∞ (5)

Using the fixed point theorem, we give an existence theorem
of solutions for the boundary value problem of the above
nonlinear fractional differential equation under both Lipschitz
and Carathéodory conditions. We present two examples to
illustrate our results.

II. MOTIVATION & METHODOLOGY

A. Motivation

III. PRELIMINARIES

In this section, we introduce notations, definitions, and
preliminaries facts which are used throughout this paper.
By C(J,R) we denote the Banach space of all continuous
functions from J into R with the norm

‖y‖ = sup{|y(t)|, t ∈ J} .

We denote by Car(J × R,R) the class of functions g : J ×
R −→ R such that
(i) the map t 7−→ g(t, x) is mesurable for each x ∈ R and
(ii) the map x 7−→ g(t, x) is is continuous for each∈ J .
The class Car(J × R,R) is called the Carathéodory class
of functions on J × R which are Lebesgue integrable when
bounded by a Lebesgue integrable function on J .

By L1(J,R) denote the space of Lebesgue integrable real-
valued functions on J endowed with the norm ‖ . ‖L1 defined
by

‖ y ‖L1=

∫ 1

0

| y(s) | ds.

Definition 3.1: [6]
The Riemann-Liouville fractional integral of the continuous
function h : (0,∞) −→ R of order α > 0 is defined by

Iαh(t) =
1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds

Provided that the right side is pointwise defined on (0,∞)
Definition 3.2: [6]

The Riemann-Liouville fractional derivative of order α > 0 of
the continuous function h : (0,∞) −→ R is given by

0D
α
Rh(t) =

1

Γ(n− α)

dn

dtn

∫ t

0

(t− s)n−α−1h(s)ds, (6)

where n = [α] + 1, [α] denote the integer part of number α,
Provided that the right side is pointwise defined on (0,∞).
From the definition of the Riemann-Liouville derivative, we
can obtain the following statement

Lemma 3.1: [6]
Let α > 0 . If we assume x ∈ C(0, 1) ∩ L(0, 1), then the
fractional differential equation

RD
α
0+x(t) = 0

has x(t) = c1t
α−1+c2t

α−2+...+cnt
α−n, ci ∈ R, i = 1, ..., n,

as unique solutions, where n is the smallest integer greater than
or equal to α.

Lemma 3.2: [6]
Assume x ∈ C(0, 1) ∩ L(0, 1) with a fractional derivative of
α > 0 that belongs to C(0, 1) ∩ L(0, 1). Then

Iα0+Dα
0+x(t) = x(t) + c1t

α−1 + c2t
α−2 + ...+ cnt

α−n

for some ci ∈ R, i = 1, 2, ..., n where n is the smallest integer
greater than or equal to α.

Lemma 3.3:
Let h ∈ C[0, 1] et 1 < α ≤ 2. The unique solution of the
problem{

Dα
(

x(t)
f(t,Bx(t))

)
= h(t) a.e 0 ≤ t < 1 ,

x(1) = x′(1) = 0,
(7)

is

x(t) = f(t, Bx(t))

∫ 1

0

H(t, s)h(s)ds , (8)

where

H(t, s) =


(t−s)α−1−tα−1(1−s)α−1

Γ(α) + s(1−t)tα−2(1−s)α−2

Γ(α−1) , 0 ≤ s ≤ t ≤ 1

−tα−1(1−s)α−1

Γ(α) + s(1−t)tα−2(1−s)α−2

Γ(α−1) , 0 ≤ t ≤ s ≤ 1
(9)

Preuve::
Applying the Riemann-Liouville fractional integral of the
order α for the equation (7), we obtain

x(t)

f(t, Bx(t))
= Iαh(t) + c1t

α−1 + c2t
α−2

for some c1, c2 ∈ R.
Consequently, the general solution of (7) is

x(t) = f(t, Bx(t))
( 1

Γ(α)

∫ t

0

(t−s)α−1h(s)ds+c1t
α−1+c2t

α−2
)

.

(10)
By x(1) = 0 then

c1 + c2 =
1

Γ(α)

∫ 1

0

(1− s)α−1h(s)ds.

From (10) we get

x′(t)f(t, Bx(t))− x(t)ft(t, Bx(t))

f2(t, Bx(t))
=

1

Γ(α− 1)

∫ t

0

(t−s)α−2h(s)ds+(α−1)c1t
α−2+(α−2)c2t

α−3 ,
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by x′(1) = 0 we have

(α− 1)c1 + (α− 2)c2 =
1

Γ(α− 1)

∫ 1

0

(1− s)α−2h(s)ds.

Then
c1 = 1

Γ(α−1)

∫ 1

0
((1− s)α−2 − (1− s)α−1)h(s)ds

c2 = 1
Γ(α−1)

∫ 1

0
((1− s)α−1 − (1− s)α−2)h(s)ds−

1
Γ(α)

∫ 1

0
(1− s)α−1h(s)ds

therefore

x(t) = f(t, Bx(t))
( 1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds

+

∫ 1

0

( tα−1

Γ(α− 1)
((1− s)α−1

− (1− s)α−2)− tα−1

Γ(α)
((1− s)α−1

+
tα−2

Γ(α)
((1− s)α−2 − (1− s)α−1)

)
h(s)ds

)
= f(t, Bx(t))

(∫ t

0

( 1

Γ(α)
(t− s)α−1

+
tα−1

Γ(α− 1)
((1− s)α−1 − (1− s)α−2)

− tα−1

Γ(α)
(1− s)α−1

+
tα−2

Γ(α− 1)
((1− s)α−2 − (1− s)α−1)

)
h(s)ds

+

∫ 1

t

( tα−1

Γ(α− 1)
((1− s)α−1 − (1− s)α−2)

− tα−1

Γ(α)
(1− s)α−1

+
tα−2

Γ(α− 1)
((1− s)α−2 − (1− s)α−1)

)
h(s)ds

)
= f(t, Bx(t))

(∫ t

0

( (t− s)α−1

Γ(α)

+
s(1− t)tα−2(1− s)α−2

Γ(α− 1)

− tα−1(1− s)α−1

Γ(α)

)
h(s)ds

+

∫ 1

t

(s(1− t)tα−2(1− s)α−2

Γ(α− 1)

− tα−1(1− s)α−1

Γ(α)

)
h(s)ds

)
= f(t, Bx(t))

∫ 1

0

H(t, s)h(s)ds ,

The proof is complete.
Lemma 3.4:

The function H(t, s) defined by (9) satisfies the following
conditions

Γ(α− 1)H(t, s) ≤ q(t)k(s) , (11)

where q(t) = (1 − t)tα−2 and k(s) = s(1 −
s)α−2 .

IV. EXISTENCE RESULT

In this section, we prove the existence results for the hybrid
differential equations with fractional order (4) on the closed
and bounded interval J = [0, 1] under mixed Lipschitz and
Carathéodory conditions on the nonlinearities involved in it.
We defined the multiplication in X by (xy)(t) = x(t)y(t) for
x, y ∈ X .
Clearly X = C(J,R) is a Banach algebra with respect to
above norm and multiplication in it.

Lemma 4.1: [2]
Let S be a non-empty, closed convex and bounded subset of
the Banach algebra X and let A1 : X −→ X and A2 : X −→
X be two operators such that

(a) A1 is Lipschitzian with a Lipschitz constant L
(b) B is completely continuous,
(c) x = A1xA2y =⇒ x ∈ S for all y ∈ S , and
(d) LM < 1 , where M = ‖A2(S)‖ = sup{‖A2(x)‖ : x ∈

S}
then the operator equation x = A1xA2y has a solution in S
We make the following assumptions
(H0) The function x 7−→ x

f(t,Bx) is increasing in R almost
every where for t ∈ J .
(H1) There exists a constant L > 0 such that

| f(t, Bx)− f(t, By) |≤ LB∗|x− y| = L∗|x− y| ,

for all t ∈ J and x, y ∈ R with L∗ = LB∗.
(H2) There exists a function h ∈ L1(J,R+) such that

|g(t, Bx)| ≤ B∗h(t) a.e t ∈ J ,

for all x ∈ R .
For convenience we denote

T =
1

Γ(α− 1)

∫ 1

0

k(s)ds . (12)

Theorem 4.1: Assume that hypotheses (H1) and (H2)
hold. Further, if

L∗B∗T‖h‖L1 < 1, (13)

then the boundary value problem (4) has a solution define J .
Preuve::

We define a subset S of X by

S = {x ∈ X/‖x‖ ≤ N} ,

where

N =
B∗F0T‖h‖L1

1−B∗L∗T‖h‖L1

,

et
F0 = sup

t∈J
|f(t, 0)| .
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It is clear that S satisfies hypothesis of lemma 4.1.
By application of Lemma 4.1, the equation (4) is equivalent
to the nonlinear hybrid integral equation

x(t) = f(t, Bx(t))

∫ 1

0

H(t, s)g(s,Bx(s))ds , t ∈ J.
(14)

Define two operators A1 : X −→ X and A2 : S −→ X by

A1x(t) = f(t, Bx(t)), t ∈ J (15)

and

A2x(t) =

∫ 1

0

H(t, s)g(s,Bx(s))ds . (16)

Then the hybrid integral equation (14) is transformed into the
operator equation as

x(t) = A1x(t)A2x(t) , t ∈ J . (17)

We shall show that the operators A1 and A2 satisfy all the
conditions of Lemma 4.1.
Claim 1, Let x, y ∈ X then by hypothesis (H1),

|A1x(t)−A1y(t)| = |f(t, Bx(t))− f(t, By(t))|

≤ L∗|x(t)− y(t)|

≤ L∗‖x− y‖ ,

for all t ∈ J .
Taking supremum over t, we obtain t

‖A1x−A1y‖ ≤ L∗‖x− y‖ ,

for all x, y ∈ X .
Claim 2, A2 is a continuous in S.
Let (xn) be a sequence in S converging to a point x ∈ S .
and Lebesgue dominated convergence theorem, we have

lim
n→∞

A2xn(t) = lim
n→∞

∫ 1

0

H(t, s)g(s,Bxn(s))ds

=

∫ 1

0

H(t, s) lim
n→∞

g(s,Bxn(s))ds

=

∫ 1

0

H(t, s)g(s,Bx(s))ds

= A2x(t) ,

for all t ∈ J .
This shows that A2 is a continuous operator on S.
Claim 3, A2 is compact operator on S .
First, we show that A2(S) is a uniformly bounded set in X .
Let x ∈ S be arbitrary. By Lemma 3.4, we have

|A2x(t)| = |
∫ 1

0

H(t, s)g(s,Bx(s))ds|

≤ q(t)
1

Γ(α− 1)
B∗
∫ 1

0

k(s)h(s)ds

≤ TB∗‖h‖L1 ,

for all t ∈ J .
Takin to sup from t, we obtain

‖A2x‖ ≤ TB∗‖h‖L1 ,

for all x ∈ S.
so A2 is uniformly bounded on S.
Next, we prove that A2(S) is an equi-continuous set on X .
Given ε > 0 and let

δ < min
{1

2
,

Γ(α+ 1)ε

12‖h‖L1

}
Let x ∈ S et t1, t2 ∈ [0, 1] with t1 < t2 , 0 <

t2 − t1 < δ .
We have

|A2x(t2)−A2x(t1)| =
∣∣∣ ∫ 1

0

H(t2, s)g(s,Bx(s))ds

−
∫ 1

0

H(t1, s)g(s,Bx(s))ds
∣∣∣

≤ B∗‖h‖L1

∣∣∣ ∫ t2

0

(t2 − s)α−1 − tα−1
2 (1− s)α−1

Γ(α)
ds

+

∫ t2

0

s(1− t2)tα−2
2 (1− s)α−2

Γ(α− 1)
ds

−
∫ 1

t2

tα−1
2 (1− s)α−1

Γ(α)
ds

+

∫ 1

t2

s(1− t2)tα−2
2 (1− s)α−2

Γ(α− 1)
ds

−
∫ t1

0

(t1 − s)α−1 − tα−1
1 (1− s)α−1

Γ(α)
ds

−
∫ t1

0

s(1− t1)tα−2
1 (1− s)α−2

Γ(α− 1)
ds

+

∫ 1

t1

tα−1
1 (1− s)α−1

Γ(α)
ds

−
∫ 1

t1

s(1− t1)tα−2
1 (1− s)α−2

Γ(α− 1)
ds
∣∣∣

then

|A2x(t2)−A2x(t1)| ≤

B∗‖h‖L1

(∫ t2

0

(t2 − s)α−1

Γ(α)
ds

−
∫ t1

0

(t1 − s)α−1

Γ(α)
ds+ (tα−1

2 − tα−1
1 )

∫ 1

0

(1− s)α−1

Γ(α)
ds

+(tα−2
2 − tα−2

1 )

∫ 1

0

(1− s)α−2

Γ(α− 1)
ds

+(tα−1
2 − tα−1

1 )

∫ 1

0

(1− s)α−2

Γ(α− 1)
ds
)
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≤ B∗‖h‖L1

( tα2 − tα1 + tα−1
2 − tα−1

1

Γ(α+ 1)

+
tα−2
2 − tα−2

1

Γ(α)
+
tα−1
2 − tα−1

1

Γ(α)

)
≤ B∗‖h‖L1

Γ(α+ 1)

(
tα2 − tα1 + (1 + α)(tα−1

2

−tα−1
1 ) + α(tα−2

2 − tα−2
1 )

)
≤ B∗‖h‖L1

Γ(α+ 1)

(
tα2 − tα1

+3(tα−1
2 − tα−1

1 ) + 2(tα−2
2 − tα−2

1 )
)
.

In order to estimate tα2 − tα1 , tα−1
2 − tα−1

1 and
tα−2
2 − tα−2

1 ,
we consider the following cases
Case 1: 0 ≤ t1 < δ , t2 < 2δ.
tα2 − tα1 ≤ tα2 < (2δ)α ≤ 2αδ ≤ 4δ,
tα−1
2 − tα−1

1 ≤ tα−1
2 < (2δ)α−1 ≤ 2α−1δ ≤ 2δ

tα−2
2 − tα−2

1 ≤ tα−2
2 < (2δ)α−2 ≤ 2αδ ≤ δ

Case 2: 0 < t1 < t2 ≤ δ.
tα2 − tα1 ≤ tα2 < δα ≤ αδ ≤ 4δ, tα−1

2 − tα−1
1 ≤ tα−1

2 <
δα−1 ≤ (α− 1)δ ≤ 2δ
tα−2
2 − tα−2

1 ≤ tα−2
2 < δα−2 ≤ (α− 2)δ ≤ δ

Case 3: δ ≤ t1 < t2 ≤ 1.
tα2 − tα1 ≤ αδ ≤ 4δ, tα−1

2 − tα−1
1 ≤ (α− 1)δ < 2δ

tα−2
2 − tα−2

1 ≤ (α− 2)δ < δ

we obtain
|A2x(t2)−A2x(t1)| < ε ,

for all t1, t2 ∈ J and all x ∈ X .
This implies that A2(S) is an equi-continuous set in X .
Then by Arzelà-Ascoli theorem, A2 is a continuous and
compact operator on S.
Claim 4, The hypothesis (c) of lemma 4.1 is satisfied.
Let x, y ∈ X such that x = A1xA2y. Then

|x(t)| = |A1x(t)||A2y(t)|
= |f(t, Bx(t))− f(t, 0)

+ f(t, 0)||
∫ 1

0

H(t, s)g(s,Bx(s))ds|

≤ B∗[L∗|x(t)|+ F0]
(
q(t)

1

Γ(α− 1)

∫ 1

0

k(s)h(s)ds
)

≤ B∗[L∗|x(t)|+ F0]T‖h‖L1 .

Thus,

|x(t)| ≤ B∗F0T‖h‖L1

1−B∗L∗T‖h‖L1

,

Taking supremum over t,

‖x‖ ≤ B∗F0T‖h‖L1

1−B∗L∗T‖h‖L1

.

Then x ∈ S and the hypothesis (c) of Lemma 4.1 is satisfied.
Finally, we have
M = ‖A2(S)‖ = sup{‖A2x‖ : x ∈ S} ≤ B∗T‖h‖L1 ,
so,

L∗M ≤ L∗B∗T‖h‖L1 < 1 .

Thus, all the conditions of Lemma 4.1 are satisfied.
Hence the operator equation A1xA2x = x has a solution in
S. As a result, the boundary value problem (4) has a solution
defined on J . This completes the proof.

V. EXEMPLES

In this section, we will present two examples to illustrate
the main results.

A. Exemple 1

we consider the fractional hybrid differential equation{
D

3
2x(t) = sinx p.p. 0 ≤ t < 1 ,

x(1) = x′(1) = 0 ,
(18)

whetre f(t, x) = 1 , g(t, x) = sinx and h(t) = 1 .
Then hypothesis (H1) and (H2) hold.
Since

T =
1

Γ(α− 1)

∫ 1

0

k(s)ds

=
1

Γ( 1
2 )

∫ 1

0

s(1− s) 1
2 ds

=
4

35
√
π

,

choosing L = 1, then we have

LT‖h‖L1 < 1 .

Therefore, the fractional hybrid differential equation (18) has
a solution.

B. Exemple 2

we consider the fractional hybrid differential equation{
D

3
2

[
x(t)

sin x+2

]
= cosx p.p. 0 ≤ t < 1

x(1) = x′(1) = 0
(19)

where f(t, x) = sinx + 2 , g(t, x) = cosx et
h(t) = 1.
Then hypothesis (H1) and (H2) hold.
Since

T =
4

35
√
π

.

choosing L = 1, then

LT‖h‖L1 < 1 .

Therefore, the fractional hybrid differential equation (19) has
a solution on [0, 1].
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Abstract—In this paper, we study the Cauchy problem of the
fractional drift-diffusion system. By using the Fourier localization
argument and the Littlewood Paley theory, we get the local well-
posedness for large initial data in critical Fourier-Besov-Morrey
space FN

2−2α+ n
p′+

λ
p

p,λ,q ×FN
2−2α+ n

p′+
λ
p

p,λ,q , Moreover, if the initial
data is sufficiently small then the solution is global.

Index Terms—Drift-diffusion, Local existence, Littlewood-
Paley theory, Fourier-Besov-Morrey spaces.

I. INTRODUCTION

In this paper, we consider the following Cauchy problem for
the fractional drift-diffusion system in Rn×R+ with fractional
Laplacian

∂tv + (−∆)
α
2 v = −∇ · (v∇φ) in Rn × (0,∞),

∂tw + (−∆)
α
2 w = ∇ · (w∇φ) in Rn × (0,∞),

∆φ = v − w in Rn × (0,∞),
v(x, 0) = v0(x), w(x, 0) = w0(x) in Rn,

(1)

where the unknown functions v = v(x, t) and w = w(x, t)
denote densities of the electron and the hole in electrolytes,
respectively, φ = φ(x, t) denotes the electric potential, v0(x)
and w0(x) are initial datum. Throughout this paper, we assume
that n ≥ 2 and 1 < α ≤ 2.
Notice that the function φ is determined by the Poison equation
in the third equation of (1), and it’s given by:

φ(x, t) = (−∆)−1(w − v)(x, t).

So that the system (1) can be rewritten as the following system: ∂tv + (−∆)
α
2 v = −∇ ·

(
v∇(−∆)−1(w − v)

)
in Rn × R+

∂tw + (−∆)
α
2 w = ∇ ·

(
w∇(−∆)−1(w − v)

)
in Rn × R+

v(x, 0) = v0(x), w(x, 0) = w0(x) in Rn.
(2)

Mathematical analysis of the Drift-diffusion system has
drawn much attention during the past three decades, we
refer the reader to see [1], [5] and the references therein
for previous works on this system concerning existence of
classical solutions and weak solutions.

In the context of Besov spaces and for α = 2, Karch in [14]
proved existence of global solution of the system (1) with
small initial data in critical Besov space Ḃ−2+n

p
p,∞ (Rn) with

n
2 ≤ p < n. After, Deng and Li [9] showed that the system

(1) is well-posed in Ḃ−
3
2

4,2

(
R2
)
, and ill-posed in Ḃ−

3
2

4,r

(
R2
)

for

2 < r ≤ ∞. Zhao, Liu, and Cui [21] established the existence
of global and local solution of the system (1) in critical Besov
space Ḃ−2+n

p
p,r (Rn) with 1 < p < 2n and 1 ≤ r ≤ ∞.

We mention here that if w vanishes (w = 0) and for α = 2,
the system (1) becomes to the well-known Keller-Segel model
of chemotaxis: ∂tv = ∆v −∇ · (v∇φ) in Rn × (0,∞),

∆φ = v in Rn × (0,∞),
v(x, 0) = v0(x), in Rn.

(3)

In the paper [4] the local well-posedness of the system (3)
has been proved in the three-dimensional case. Iwabuchi and
Nakamura [12], [13] get the global well-posednes of (3) for
small initial data in the critical space

Ḃ−2+n
p

p,r (Rn)

with 1 ≤ p < ∞ and 1 ≤ r ≤ ∞ Inspired by the work [21],
The purpose of this paper is to establish the existence of local
solution to (1) for large initial data and global solution for
small initial data in the critical Fourrier-Besov-Morrey space

FN 2−2α+ n
p′+

λ
p

p,λ,q ×FN 2−2α+ n
p′+

λ
p

p,λ,q

Let us firstly recall the scaling property of the systems:
if (v, w) solves (1) with initial data (v0, w0) (φ can be deter-
mined by (v, w)), then (vγ , wγ) with (vγ(x, t), wγ(x, t)) :=
(γαv (γx, γαt) , γαw (γx, γαt)) is also a solution to (1) with
the initial data

(v0,γ(x), w0,γ(x)) := (γαv0(γx), γαw0(γx)) (4)

(φγ can be determined by (vγ , wγ)).

Definition 1.1: A critical space for initial data of the system
(1) is any Banach space E ⊂ S ′ (Rn) whose norm is invariant
under the scaling (4) for all γ > 0, i.e

‖(v0,γ(x), w0,γ(x))‖E ≈ ‖(v0(x), w0(x))‖E .

Under these scalings, We can show that the space pair

FN 2−2α+ n
p′+

λ
p

p,λ,q × FN 2−2α+ n
p′+

λ
p

p,λ,q is critical for (1) see (Re-
mark 2.1 for details).
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In order to solve the equation (1), we consider the following
equivalent integral system
v(t) =e−t(−∆)

α
2 v0 −

∫ t

0

e−(t−τ)(−∆)
α
2 ∇ · (v∇φ(τ)) dτ

w(t) =e−t(−∆)
α
2 w0 +

∫ t

0

e−(t−τ)(−∆)
α
2 ∇ · (w∇φ(τ)) dτ.

(5)
With F

(
(−∆)

α
2 f
)

(ξ) = |ξ|αFf(ξ).
Throughout this paper, we use FN s

p,λ,q to denote the
homogenous Fourier Besov-Morrey spaces, (v, w) ∈ X to
denote (v, w) ∈ X ×X for a Banach space X

(
the product

X×X will be endowed with the usual norm ‖(v, w)‖X×X :=

‖v‖X +‖w‖X
)

, ‖(v, w)‖X to denote ‖(v, w)‖X×X , V .W

means that there exists a constant C > 0 such that V ≤ CW,
and p′ is the conjugate of p satisfying 1

p + 1
p′ = 1 for

1 ≤ p ≤ ∞.
Now we present our main results as follows.
Theorem 1.1: Let n ≥ 2, 1 < α ≤ 2, ρ0 >
α
α−1 , max{n− (n + 3− 2α)p, 0} ≤ λ < n, 1 ≤ p < ∞,

q ∈ [1,∞], (v0, w0) ∈ FN 2−2α+ n
p′+

λ
p

p,λ,q and 1
ρ0

+ 1
ρ′0

= 1.

Then there exists T ≥ 0 such that the system (1) has a
unique local solution
(v, w) ∈ XT , where

XT = Lρ0
(

0, T ;FN
2−2α+ n

p′+
λ
p+ 2

ρ0

p,λ,q

)
∩Lρ

′
0

(
0, T ;FN

2−2α+ n
p′+

λ
p+ 2

ρ′0
p,λ,q

)
,

and

(v, w) ∈ C
(

0, T ;FN
2−2α+ n

p′+
λ
p+ 2

ρ0

p,λ,q

)
.

Besides, there exixts K ≥ 0 such that if (v0, w0) satisfies:
‖(v0, w0)‖

FN
2−2α+ n

p′ +
λ
p

p,λ,q

≤ K, then the above assertion holds

for T =∞; i.e, the solution (v, w) is global.

II. PRELIMINARIES

In this section, we give some notations and recall basic
properties about Fourier-Besov-Morrey spaces that will be
used throughout the paper.
The Fourier-Besov-Morrey spaces were introduced in [10] are
constructed via a type of localization on Morrey spaces.

We define the function spaces Mλ
p .

Definition 2.1: [15] Let 1 ≤ p ≤ ∞ and 0 ≤ λ < n. The
homogeneous Morrey space Mλ

p is the set of all functions
f ∈ Lp (B (x0, r)) such that

‖f‖Mλ
p

= sup
x0∈Rn

sup
r>0

r−
λ
p ‖f‖Lp(B(x0,r)) <∞, (6)

where B (x0, r) is the open ball in Rn centered at x0 and with
radius r > 0.
The space Mλ

p endowed with the norm ‖f‖Mλ
p

is a Banach
space.
When p = 1, the L1 -norm in (6) is understood as the total

variation of the measure f on B (x0, r) and Mλ
p as a subspace

of Radon measures. When λ = 0, we have M0
p = Lp.

The proofs of the results presented in this paper are based
on a dyadic partition of unity in the Fourier variables, the
so-called, homogeneous Littlewood-Paley decomposition. We
recall briefly this construction below. For more detail, we refer
the reader to [2].
Let f ∈ S′ (Rn) . Define the Fourier transform as

f̂(ξ) = Ff(ξ) = (2π)−
n
2

∫
Rn
e−ix·ξf(x)dx

and its inverse Fourier transform as

f̆(x) = F−1f(x) = (2π)−
n
2

∫
Rn
eix·ξf(ξ)dξ.

Let ϕ ∈ S
(
Rd
)

be such that 0 ≤ ϕ ≤ 1 and supp(ϕ) ⊂{
ξ ∈ Rd : 3

4 ≤ |ξ| ≤
8
3

}
and∑

j∈Z
ϕ
(
2−jξ

)
= 1, for all ξ 6= 0.

We denote

ϕj(ξ) = ϕ
(
2−jξ

)
, ψj(ξ) =

∑
k≤j−1

ϕk(ξ)

and
h(x) = F−1ϕ(x), g(x) = F−1ψ(x).

We now present some frequency localization operators:

∆̇jf = ϕj(D)f = 2dj
∫
Rd
h
(
2jy
)
f(x− y)dy

and

Ṡjf =
∑
k≤j−1

∆̇kf = ψj(D)f = 2dj
∫
Rd
g
(
2jy
)
f(x− y)dy.

From the definition, one easily derives that

∆̇j∆̇kf = 0, if |j − k| ≥ 2

∆̇j

(
Ṡk−1f∆̇kf

)
= 0, if |j − k| ≥ 5.

The following Bony paraproduct decomposition will be
applied throughout the paper.

uv = Ṫuv + Ṫvu+R(u, v)

where Ṫuv =
∑
j∈Z Ṡj−1u∆̇jv, Ṙ(u, v) =

∑
j∈Z ∆̇ju∆̃jv,

∆̃jv =
∑
|j′−j|≤1 ∆̇j′v.

Lemma 2.1: [10] Let 1 ≤ p1, p2, p3 < ∞ and 0 ≤
λ1, λ2, λ3 < n.
(i) (Hölder’s inequality) Let 1

p3
= 1

p1
+ 1
p2

and λ3

p3
= λ1

p1
+ λ2

p2
,

then we have

‖fg‖
M
λ3
p3

≤ ‖f‖
M
λ1
p1

‖g‖
M
λ2
p2

. (7)

(ii) (Young’s inequality) If ϕ ∈ L1 and g ∈ Mλ1
p1 , then

‖ϕ ∗ g‖
M
λ1
p1

≤ ‖ϕ‖L1‖g‖
M
λ1
p1

, (8)

where ∗ denotes the standard convolution operator.
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Now, we recall the Bernstein type lemma in Fourier vari-
ables in Morrey spaces.

Lemma 2.2: [10] Let 1 ≤ q ≤ p < ∞, 0 ≤ λ1, λ2 <
n, n−λ1

p ≤ n−λ2

q and let γ be a multi-index. If supp(f̂) ⊂
{|ξ| ≤ A2j}, then there is a constant C > 0 independent of
f and j such that

‖(iξ)γ f̂‖
M
λ2
q
≤ C2j|γ|+j(

n−λ2
q −n−λ1p )‖f̂‖

M
λ1
p
. (9)

Then, we define the function spaces FN s
p,λ,q(Rn), see [10].

Definition 2.2: (Homogeneous Fourier-Besov-Morrey
spaces )
Let 1 ≤ p, q ≤ ∞, 0 ≤ λ < n and s ∈ R. The Fourier-
Besov-Morrey space FN s

p,λ,q is defined as the set of all
distributions f ∈ S ′\P, P is the set of all polynomials, such
that ϕj f̂ ∈ Mλ

p , for all j ∈ Z, and

‖f‖FN sp,λ,q
def
=


(∑

j∈Z 2jsq
∥∥∥ϕj f̂∥∥∥q

Mλ
p

) 1
q

for q <∞

supj∈Z 2js
∥∥∥ϕj f̂∥∥∥

Mλ
p

for q =∞.
(10)

Note that the space FN s
p,λ,q(Rn) equipped with the

norm (10) is a Banach space. Since M0
p = Lp, we

have FN s
p,0,q = FBsp,q ,FN s

1,0,q = FBs1,q = Bsq and
FN−1

1,0,1 = χ−1 where Bsq is the Fourier-Herz space and χ−1

is the Lei-Lin space [18].

Remark 2.1: The space pair FN 2−2α+ n
p′+

λ
p

p,λ,q ×

FN 2−2α+ n
p′+

λ
p

p,λ,q is critical for (1). For this,
set u0,γ(ξ) = γ2−2αu0(γξ), then its Fourier transform is
û0,γ(ξ) = γ2−2α−nû0

(
γ−1ξ

)
.

Let

fj(ξ)
def
= ϕ

(
2−j+[log2 γ]−log2 γξ

)
û0,γ(ξ)

= ϕ
(

2−j+[log2 γ]−log2 γξ
)
γ2−2α−nû0

(
γ−1ξ

)
By change of variable, we get

‖fj‖Mλ
p

= γ2−2α−n
∥∥∥ϕ(2−j+[log2 γ]−log2 γξ

)
û0

(
γ−1ξ

)∥∥∥
Mλ
p

= γ2−2α−n sup
x0∈Rn

sup
r>0

r−
λ
p∥∥∥ϕ(2−j+[log2 γ]γγ−1ξ

)
û0

(
γ−1ξ

)∥∥∥
Lp(B(x0,r))

= γ2−2α−nγ
n
p γ
−λ
p sup
x0∈Rn

sup
r>0

(
γ−1r

)−λp∥∥∥ϕ(2−j+[log2 γ]η
)
û0(η)

∥∥∥
Lp(B(γ−1x0,γ−1r))

= 2

(
2−2α+ n

p′−
λ
p

)
log2 γ

∥∥∥ϕ(2−j+[log2 γ]η
)
û0(η)

∥∥∥
Mλ
p

,

which implies

‖{2j(2−2α+ n
p′−

λ
p )‖fj(ξ)‖Mλ

p
}‖lq

= ‖{2j(2−2α+ n
p′−

λ
p )

2
log2 γ(2α−2− n

p′+
λ
p )‖ϕj−[log2 γ]û0(ξ)‖Mλ

p
}‖lq

≈ ‖u0‖
FN

2−2α+ n
p′ −

λ
p

p,λ,q

and since

ϕj(ξ)û0,γ(ξ) =
∑
|k−j|≤2

ϕj(ξ)fk(ξ),

we can get

‖u0,γ‖
FN

2−2α+ n
p′ −

λ
p

p,λ,q

≈ ‖u0‖
FN

2−2α+ n
p′ +

λ
p

p,λ,q

.

Similary, we have

‖w0,γ‖
FN

2−2α+ n
p′ +

λ
p

p,λ,q

≈ ‖w0‖
FN

2−2α+ n
p′ +

λ
p

p,λ,q

.

Now, we give the definition of the mixed space-time spaces.
Definition 2.3: Let s ∈ R, 1 ≤ p <∞, 1 ≤ q, ρ ≤ ∞, 0 ≤

λ < n, and I = [0, T ), T ∈ (0,∞]. The space-time norm is
defined on u(t, x) by

‖u(t, x)‖Lρ(I,FṄ sp,λ,q)
=
{∑
j∈Z

2jqs‖̂̇∆ju‖qLρ(I,Mλ
p )

}1/q

,

and denote by Lρ(I,FN s
p,λ,q) the set of distributions in

S′(R× Rn)/P with finite ‖.‖Lρ(I,FN sp,λ,q) norm.
According to Minkowski inequality, it is easy to verify that

Lρ
(
I;FN s

p,λ,q

)
↪→ Lρ

(
I,FN s

p,λ,q

)
, if ρ ≤ q,

Lρ
(
I,FN s

p,λ,q

)
↪→ Lρ

(
I;FN s

p,λ,q

)
, if ρ ≥ q,

where ‖u(t, x)‖Lρ
(
I;FN s

p,λ,q

)
:=(∫

I
‖u(τ, ·)‖ρFN sp,λ,qdτ

)1/ρ

.

At the end of this section we recall an existence and
uniqueness result for an abstract operator equation in a Banach
space, which will be used to prove Theorem 1.1 in the sequel.
For the proof, we refer the reader to see [17] and [3].

Lemma 2.3: Let X be a Banach space with norm ‖.‖X and
B : X ×X 7−→ X be a bounded bilinear operator satisfying

‖B(u, v)‖X ≤ η‖u‖X‖v‖X

for all u, v ∈ X and a constant η > 0. Then, if 0 < ε < 1
4η and

if y ∈ X such that ‖y‖X ≤ ε, the equation x := y +B(x, x)
has a solution x in X such that ‖x‖X ≤ 2ε. This solution
is the only one in the ball B(0, 2ε). Moreover, the solution
depends continuously on y in the sense: if ‖y′‖X < ε, x′ =
y′ +B(x′, x′), and ‖x′‖X ≤ 2ε, then

‖x− x′‖X ≤
1

1− 4εη
‖y − y′‖X .

IJOA ©2021

IJOA ©2021 30



International Journal on Optimization and Applications
IJOA. Vol. 1, Issue No. 2, Year 2021, www.usms.ac.ma/ijoa
Copyright ©2021 by International Journal on Optimization and Applications

III. LINEAR ESTIMATES IN FOURIER-BESOV-MORREY
SPACES

In this section, we will establish some crucial estimates in
the proof of Theorem 1.1. We now consider the following
linear estimates for the fractional heat semigroup

{
et∆
}
t≥0

.

Lemma 3.1: Let I=(0, T), s ∈ R, p, q, ρ ∈ [1,∞] and 0
≤ λ < n. There exists a constant C > 0 such that

‖e−t(−∆)
α
2 u0‖

Lρ
(

[0,T ),FN
s+α

ρ
p,λ,q

) ≤ C‖u0‖FN sp,λ,q , (11)

where u0 ∈ FN s
p,λ,q.

proof Since suppϕj ⊂ {ξ ∈ Rn : 2j−1 ≤ |ξ| ≤ 2j+1}, we
obtain∥∥∥F [∆je

−t(−∆)
α
2 u0

]∥∥∥
Mλ
p

=
∥∥∥ϕje−t|ξ|α û0

∥∥∥
Mλ
p

≤ e−t2
α(j−1)

‖ϕj û0‖Mλ
p
.

Then, by the Minkowski inequality, we have∥∥∥e−t(−∆)
α
2 u0

∥∥∥
Lρ
(
I;FN

s+α
ρ

p,λ,q

)

≤

∥∥∥∥∥∥
2j(s+

α
ρ )

(∫ T

0

e−tρ2
α(j−1)

dt

) 1
ρ

‖ϕj û0‖Mλ
p


∥∥∥∥∥∥
`q

≤

∥∥∥∥∥∥
2j(s+

α
ρ )

(
1− e−Tρ2(j−1)α

ρ2α(j−1)

) 1
ρ

‖ϕj û0‖Mλ
p


∥∥∥∥∥∥
`q

≤ C ‖u0‖FN sp,λ,q .

Lemma 3.2: [8] Let I=(0, T), s ∈ R, p, q, ρ ∈ [1,∞] 0
≤ λ < n and 1 ≤ r ≤ ρ.
There exists a constant C > 0 such that∥∥∥∥∫ t

0

e(t−τ)∆f(τ)dτ

∥∥∥∥
Lρ
(
I;FN

s+ 2
ρ

p,λ,q

) ≤ C‖f‖
Lr
(
I;FN

s−2+ 2
r

p,λ,q

). (12)

IV. BILINEAR ESTIMATES IN FOURIER-BESOV-MORREY
SPACES

Lemma 4.1: Let I = (0, T ), s ∈ R, p, q ∈ [1,∞],
max{n − (n + 3 − 2α)p, 0} < λ < n, ρ0 >

α

α− 1
and

1
ρ0

+ 1
ρ′0

= 1. There exists a constant C > 0 such that

‖∇. (f∇g) ‖
L1

(
I;FN

2−2α+ n
p′+

λ
p

p,λ,q

) ≤ C
[
‖f‖

Lρ0

(
I;FN

2−2α+ n
p′+

λ
p

+ 2
ρ0

p,λ,q

)
×‖g‖

Lρ
′
0

I;FN 2−α+ n
p′+

λ
p

+ 2
ρ′0

p,λ,q



+‖g‖
Lρ0

(
I;FN

2−α+ n
p′+

λ
p

+ 2
ρ0

p,λ,q

) × ‖f‖
Lρ
′
0

I;FN 2−2α+ n
p′+

λ
p

+ 2
ρ′0

p,λ,q


]

for all f ∈ Lρ0
(
I;FN

2−2α+ n
p′+

λ
p+ 2

ρ0

p,λ,q

)
∩

Lρ
′
0

(
I;FN

2−2α+ n
p′+

λ
p+ 2

ρ′0
p,λ,q

)
and g ∈ Lρ

′
0

(
I;FN

2−α+ n
p′+

λ
p+ 2

ρ′0
p,λ,q

)
∩

Lρ0
(
I;FN

2−α+ n
p′+

λ
p+ 2

ρ0

p,λ,q

)
Proof Applying Bony paraproduct decomposition and quasi-
orthogonality property for Littlewood-Paley decomposition,
for fixed j, we obtain

∆̇j(f∇g) =
∑
|k−j|≤4

∆̇j(Ṡk−1f∆̇k∇g) +
∑
|k−j|≤4

∆̇j(Ṡk−1g∆̇k∇f)

+
∑
k≥j−3

∆̇j(∆̇kf
˜̇∆k∇g)

= I1
j + I2

j + I3
j

Then, by the triangle inequalities in Mλ
p and in lq(Z), we have

‖∇. (f∇g) ‖
L1

(
I;FN

2−2α+ n
p′+

λ
p

p,λ,q

) ≤ ‖f∇g‖
L1

(
I;FN

3−2α+ n
p′+

λ
p

p,λ,q

)

≤ {
∑
j∈Z

2j(3−2α+ n
p′+

λ
p )q‖ ̂∆̇j(f∇g)‖q

L1(I,Mλ
p )
}

1
q

≤ {
∑
j∈Z

2j(3−2α+ n
p′+

λ
p )q‖Î1

j ‖
q
L1(I,Mλ

p )
}

1
q

+{
∑
j∈Z

2j(3−2α+ n
p′+

λ
p )q‖Î2

j ‖
q
L1(I,Mλ

p )
}

1
q

+{
∑
j∈Z

2j(3−2α+ n
p′+

λ
p )q‖Î3

j ‖
q
L1(I,Mλ

p )
}

1
q

:= J1 + J2 + J3

By using the Young’s inequality in Morrey spaces and
Bernstein-type inequality with |γ| = 0, we have

∥∥∥ϕj f̂∥∥∥
L1
≤ C2j(

n
p′+

λ
p )
∥∥∥ϕj f̂∥∥∥

Mλ
p
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Then

‖Î1
j ‖L1(I,Mλ

p ) ≤
∑
|k−j|≤4

‖ ̂(Ṡk−1f∆̇k∇g)‖L1(I,Mλ
p )

≤
∑
|k−j|≤4

‖ϕj∇̂g‖Lρ′0 (I,Mλ
p )

∑
l≤k−2

‖ϕlf̂‖Lρ0 (I,L1)

≤ C
∑
|k−j|≤4

2k‖ϕkĝ‖Lρ′0 (I,Mλ
p )∑

l≤k−2

2
( n
p′+

λ
p )l‖ϕlf̂‖Lρ0 (I,Mλ

p )

≤ C
∑
|k−j|≤4

2k‖ϕj ĝ‖Lρ′0 (I,Mλ
p )∑

l≤k−2

2
(2−2α+ n

p′+
λ
p+ α

ρ0
)l

2(2α−2− α
ρ0

)l‖ϕlf̂‖Lρ0 (I,Mλ
p )

≤ C‖f‖
Lρ0 (I,FN

2−2α+ n
p′ +

λ
p

+ α
ρ0

p,λ,q )∑
|k−j|≤4

2k
( ∑
l≤k−2

2l(2α−2− α
ρ0

)q′
) 1
q′ ‖ϕkĝ‖Lρ′0 (I,Mλ

p )

≤ C‖f‖
Lρ0 (I,FN

2−2α+ n
p′ +

λ
p

+ α
ρ0

p,λ,q )∑
|k−j|≤4

2k(2α−1− α
ρ0

)‖ϕkĝ‖Lρ′0 (I,Mλ
p )
,

where we have used the fact that ρ0 >
α

α− 1
in the last

inequality.
Thus, by using the Young inequality, we have

J1 ≤ C‖f‖
Lρ0 (I,FN

2−2α+ n
p′ +

λ
p

+ α
ρ0

p,λ,q )(∑
j∈Z

2j(3−2α+ n
p′+

λ
p )q
( ∑
|k−j|≤4

2k(2α−1− α
ρ0

)‖ϕkĝ‖Lρ′0 (I,Mλ
p )

)q) 1
q

≤ C‖f‖
Lρ0 (I,FN

2−2α+ n
p′ +

λ
p

+ α
ρ0

p,λ,q )(∑
j∈Z

( ∑
|k−j|≤4

2(j−k)(−1+ n
p′+

λ
p )q

2k(2+ n
p′+

λ
p−

α
ρ0

)‖ϕkĝ‖Lρ′0 (I,Mλ
p )

)q) 1
q

≤ C‖f‖
Lρ0 (I,FN

2−2α+ n
p′ +

λ
p

+ α
ρ0

p,λ,q )
‖g‖

Lρ
′
0 (I,FN

2−α+ n
p′ +

λ
p

+ α
ρ′0

p,λ,q )

,

where we have used 1
ρ0

+ 1
ρ′0

= 1.
Similary, we get

J2 ≤ C‖g‖
Lρ0 (I,FN

2−α+ n
p′ +

λ
p

+ α
ρ0

p,λ,q )
‖f‖

Lρ
′
0 (I,FN

2−2α+ n
p′ +

λ
p

+ α
ρ′0

p,λ,q )

.

For J3, first we use the Young inequality in Morrey spaces,
the Bernstein inequality (|γ| = 0) together with the Hölder

inequality, to get

‖Î3
j ‖L1(I,Mλ

p ) ≤
∑
k≥j−3

‖
̂

(∆̇kf
˜̇∆k∇g)‖L1(I,Mλ

p )

=
∑
k≥j−3

‖(̂∆̇kf ∗ ˜̇̂∆k∇g)‖L1(I,Mλ
p )

≤
∑
k≥j−3

‖ϕkf̂‖Lρ′0 (I,Mλ
p )

∑
|l−k|≤1

‖ϕl∇̂g‖Lρ0 (I,L1)

≤ C
∑
k≥j−3

‖ϕkf̂‖Lρ′0 (I,Mλ
p )

∑
|l−k|≤1

2l2l(
n
p′+

λ
p )‖ϕlĝ‖Lρ0 (I,Mλ

p )

≤ C
∑
k≥j−3

‖ϕkf̂‖Lρ′0 (I,Mλ
p )

( ∑
|l−k|≤1

2l(α−1− α
ρ0

)q′
) 1
q′

‖g‖
Lρ0 (I,FN

2−α+ n
p′ +

λ
p

+ α
ρ0

p,λ,q )

≤ C‖g‖
Lρ0 (I,FN

2−α+ n
p′ +

λ
p

+ 2
ρ0

p,λ,q )∑
k≥j−3

2k(α−1− α
ρ0

)‖ϕkf̂‖Lρ′0 (I,Mλ
p )

Then, applying the Hölder inequality for series, and noticing
that λ > n− (n+ 3− 2α)p implies that 3− 2α+ n

p′ +
λ
p > 0

, we obtain

J3 ≤ C‖g‖
Lρ0 (I,FN

2−α+ n
p′ +

λ
p

+ α
ρ0

p,λ,q )(∑
j∈Z

2j(3−2α+ n
p′+

λ
p )q
( ∑
k≥j−3

2k(α−1− α
ρ0

)‖ϕkf̂‖Lρ′0 (I,Mλ
p )

)q) 1
q

≤ C‖g‖
Lρ0 (I,FN

2−α+ n
p′ +

λ
p

+ α
ρ0

p,λ,q )(∑
j∈Z

( ∑
k≥j−3

2(j−k)(3−2α+ n
p′+

λ
p )

2
k(2−α+ n

p′+
λ
p+ α

ρ0
)‖ϕkf̂‖Lρ′0 (I,Mλ

p )

)q) 1
q

≤ C‖g‖
Lρ0 (I,FN

2−α+ n
p′ +

λ
p

+ α
ρ0

p,λ,q )

‖f‖
Lρ
′
0 (I,FN

−2+ n
p′ +

λ
p

+ 2
ρ′0

p,λ,q )

∑
i≤3

2i(3−2α+ n
p′+

λ
p )

≤ C‖g‖
Lρ0 (I,FN

2−α+ n
p′ +

λ
p

+ α
ρ0

p,λ,q )
‖f‖

Lρ
′
0 (I,FN

2−2α+ n
p′ +

λ
p

+ α
ρ′0

p,λ,q )

.

Thus, we finished the proof of Lemma 4.1.

V. PROOF OF THEOREM 1.1

To ensure the existence of the global and local solution of
the system (1), we will use Lemma 2.3 with the linear and
bilinear estimate that we have established in section 3 and 4.

Let ρ0 >
α

α− 1
be any given real number and 1

ρ0
+ 1
ρ′0

= 1.

Note that the space XT defined in Theorem 1.1 is a Banach
space equipped with the norm

‖u‖XT = ‖u‖
Lρ0 (I,FN

2−2α+ n
p′ +

λ
p

+ α
ρ0

p,λ,q )
+‖u‖

Lρ
′
0 (I,FN

2−2α+ n
p′ +

λ
p

+ α
ρ′0

p,λ,q )

.
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We first prove global existence for small initial data. For
this purpose we choose T =∞.
Set

B1(v, w) := −
∫ t

0

e−(t−τ)(−∆)
α
2 ∇·

(
v∇(−∆)−1(w − v)

)
(τ)dτ,

B2(v, w) :=

∫ t

0

e−(t−τ)(−∆)
α
2 ∇·

(
w∇(−∆)−1(w − v)

)
(τ)dτ,

Then the equivalent integral system (1.2) can be rewritten as

(v(t), w(t)) = (e−t(−∆)
α
2 v0, e

−t(−∆)
α
2 w0)+(B1(v, w), B2(v, w)) .

(13)

According to Lemma 3.1 with s = 2−2α+ n
p′+

λ
p , I = [0,∞)

and ρ = ρ0 (or ρ′0), we obtain

‖e−t(−∆)
α
2 v0‖

Lρ0

(
0,∞;FN

2−2α+ n
p′+

λ
p

+ α
ρ0

p,λ,q

) ≤
C0 ‖v0‖

FN
2−2α+ n

p′ +
λ
p

p,λ,q

and

‖e−t(−∆)
α
2 v0‖

Lρ
′
0

0,∞;FN
2−2α+ n

p′+
λ
p

+ α
ρ′0

p,λ,q


≤ C0 ‖v0‖

FN
2−2α+ n

p′+
λ
p

p,λ,q

,

which implies

‖e−t(−∆)
α
2 v0‖X∞ ≤ 2C0 ‖v0‖

FN
2−2α+ n

p′+
λ
p

p,λ,q

Similary,

‖e−t(−∆)
α
2 w0‖X∞ ≤ 2C1 ‖w0‖

FN
2−2α+ n

p′+
λ
p

p,λ,q

Thus

‖(e−t(−∆)
α
2 v0, e

−t(−∆)
α
2 w0)‖X∞ ≤

C2 ‖(v0, w0)‖
FN

2−2α+ n
p′+

λ
p

p,λ,q

(14)

Applying Lemma 3.2 with s = 2− 2α+ n
p′ + λ

p and ρ1 = 1,
and Lemma 4.1, we obtain

‖B1(v, w)‖
Lρ0

(
0,∞;FN

2−2α+ n
p′+

λ
p

+ α
ρ0

p,λ,q

)

= ‖
∫ t

0

e−(t−τ)(−∆)
α
2 ∇

·
(
v∇(−∆)−1(w − v)

)
(τ)dτ‖

Lρ0

(
0,∞;FN

2−2α+ n
p′+

λ
p

+ α
ρ0

p,λ,q

)
. ‖∇ ·

(
v∇(−∆)−1(w − v)

)
‖
L1

(
0,∞;FN

2−2α+ n
p′+

λ
p

p,λ,q

)
. ‖v‖

Lρ0

(
0,∞;FN

2−2α+ n
p′+

λ
p

+ α
ρ0

p,λ,q

)
×‖(−∆)−1(w − v)‖

Lρ
′
0

0,∞;FN
2−α+ n

p′+
λ
p

+ α
ρ′0

p,λ,q



+‖(−∆)−1(w − v)‖
Lρ0

(
0,∞;FN

2−α+ n
p′+

λ
p

+ α
ρ0

p,λ,q

)
×‖v‖

Lρ
′
0

0,∞;FN
2−2α+ n

p′+
λ
p

+ α
ρ′0

p,λ,q


. ‖v‖

Lρ0

(
0,∞;FN

2−2α+ n
p′+

λ
p

+ α
ρ0

p,λ,q

)
×‖w − v‖

Lρ
′
0

0,∞;FN
2−2α+ n

p′+
λ
p

+ α
ρ′0

p,λ,q


+‖w − v‖

Lρ0

(
0,∞;FN

2−2α+ n
p′+

λ
p

+ α
ρ0

p,λ,q

)
×‖v‖

Lρ
′
0

0,∞;FN
2−2α+ n

p′+
λ
p

+ α
ρ′0

p,λ,q


≤ C3

(
‖(v, w)‖

Lρ0

(
0,∞;FN

2−2α+ n
p′+

λ
p

+ α
ρ0

p,λ,q

)

×‖(v, w)‖
Lρ
′
0

0,∞;FN
2−2α+ n

p′+
λ
p

+ α
ρ′0

p,λ,q


)

≤ C3‖(v, w)‖2X∞
Analogously, we get

‖B1(v, w)‖
Lρ
′
0

0,∞;FN
2−2α+ n

p′+
λ
p

+ α
ρ′0

p,λ,q

 ≤ C3‖(v, w)‖2X∞

Thus, we obtain

‖B1(v, w)‖X∞ ≤ 2C3‖(v, w)‖2X∞
Similary,

‖B2(v, w)‖X∞ ≤ 2C4‖(v, w)‖2X∞
Finally,

‖(B1(v, w), B2(v, w))‖X∞ ≤ C‖(v, w)‖2X∞
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By Lemma 2.3, we know that if
‖(e−t(−∆)

α
2 v0, e

−t(−∆)
α
2 w0)‖X∞ ≤ ε with ε = 1

4C ,
then the system (1) has a unique global solution in
B̄(0, 2ε) = {x ∈ X∞ ‖x‖X∞ ≤ 2ε} . To prove
‖(e−t(−∆)

α
2 v0, e

−t(−∆)
α
2 w0)‖X∞ ≤ ε, according to (14) we

have

‖(e−t(−∆)
α
2 v0, e

−t(−∆)
α
2 w0)‖X∞ ≤

C2 ‖(v0, w0)‖
FN

2−2α+ n
p′+

λ
p

p,λ,q

So, if ‖(v0, w0)‖
FN

2−2α+ n
p′+

λ
p

p,λ,q

≤ K with K = 1
4CC2

, then

(1) has a unique global solution (v, w) ∈ X∞ satisfying

‖(v, w)‖X∞ ≤
1

2C

For the local existence, we shall decompose the initial data v0

into two terms

v0 = F−1
(
χB(0,δ)v̂0

)
+ F−1

(
χBC(0,δ)v̂0

)
:= v0,1 + v0,2,

where δ = δ (v0) > 0 is a real number. Similary, we
decompose w0

w0 = F−1
(
χB(0,δ)ŵ0

)
+ F−1

(
χBC(0,δ)ŵ0

)
:= w0,1 + w0,2.

Since v0,2 −→ 0 in FN 2−2α+ n
p′+

λ
p

p,λ,q when δ → +∞,

w0,2 −→ 0 in FN 2−2α+ n
p′+

λ
p

p,λ,q when δ → +∞,

then, there exists δ large enough such that

C2‖(v0,2, w0,2)‖
FN

2−2α+ n
p′ +

λ
p

p,λ,q

≤ ε

2
.

We get ∥∥∥(e−t(−∆)
α
2 v0, e

−t(−∆)
α
2 w0

)∥∥∥
XT
≤ ε

2

+
∥∥∥(e−t(−∆)

α
2 v0,1, e

−t(−∆)
α
2 w0,1

)∥∥∥
XT

We have ∥∥∥(e−t(−∆)
α
2 v0,1, e

−t(−∆)
α
2 w0,1

)∥∥∥
XT

=∥∥∥(e−t(−∆)
α
2 v0,1, e

−t(−∆)
α
2 w0,1

)∥∥∥
Lρ0 (I,FN

2−2α+ n
p′ +

λ
p

+ α
ρ0

p,λ,q )

+
∥∥∥(e−t(−∆)

α
2 v0,1, e

−t(−∆)
α
2 w0,1

)∥∥∥
Lρ
′
0 (I,FN

2−2α+ n
p′ +

λ
p

+ α
ρ′0

p,λ,q )

Using the fact that |ξ| ≈ 2j for all j ∈ Z, we have

∥∥∥(e−t(−∆)
α
2 v0,1, e

−t(−∆)
α
2 w0,1

)∥∥∥
Lρ0 (I,FN

2−2α+ n
p′ +

λ
p

+ α
ρ0

p,λ,q )

=
{∑
j∈Z

2
j(2−2α+ n

p′+
λ
p+ α

ρ0
)q‖ϕj

̂
e−t(−∆)

α
2 v0,1‖qLρ0 (I,Mλ

p )

}1/q

+
{∑
j∈Z

2
j(2−2α+ n

p′+
λ
p+ α

ρ0
)q‖ϕj

̂
e−t(−∆)

α
2 w0,1‖qLρ0 (I,Mλ

p )

}1/q

=
{∑
j∈Z

2
j(2−2α+ n

p′+
λ
p )q

2j(
α
ρ0

)q‖ϕj |ξ|αχB(0,δ)v̂0‖qLρ0 (I,Mλ
p )

}1/q

+
{∑
j∈Z

2
j(2−2α+ n

p′+
λ
p )q

2j(
α
ρ0

)q‖ϕj |ξ|αχB(0,δ)ŵ0‖qLρ0 (I,Mλ
p )

}1/q

. δα+ α
ρ0

(
(
∑
j∈Z

2
j(2−2α+ n

p′+
λ
p )q‖ϕj v̂0‖qLρ0 (I,Mλ

p )

)1/q

+
{∑
j∈Z

2
j(2−2α+ n

p′+
λ
p )q‖ϕjŵ0‖qLρ0 (I,Mλ

p )

}1/q)
≤ C5δ

α+ α
ρ0 T

1
ρ0 ‖(v0, w0)‖

FN
2−2α+ n

p′ +
λ
p

p,λ,q

Thus∥∥∥(e−t(−∆)
α
2 v0,1, e

−t(−∆)
α
2 w0,1

)∥∥∥
Lρ0 (I,FN

2−2α+ n
p′ +

λ
p

+ α
ρ0

p,λ,q )
≤

C5δ
α+ α

ρ0 T
1
ρ0 ‖(v0, w0)‖

FN
2−2α+ n

p′ +
λ
p

p,λ,q

Similary,

∥∥∥(e−t(−∆)
α
2 v0,1, e

−t(−∆)
α
2 w0,1

)∥∥∥
Lρ
′
0 (I,FN

2−2α+ n
p′ +

λ
p

+ α
ρ′0

p,λ,q )

≤

C5δ
α+ α

ρ′0 T
1
ρ′0 ‖(v0, w0)‖

FN
2−2α+ n

p′ +
λ
p

p,λ,q

.

Hence,

∥∥∥(e−t(−∆)
α
2 v0,1, e

−t(−∆)
α
2 w0,1

)∥∥∥
XT
≤

C5δ
α+ α

ρ0 T
1
ρ0 ‖(v0, w0)‖

FN
2−2α+ n

p′ +
λ
p

p,λ,q

+C5δ
α+ α

ρ′0 T
1
ρ′0 ‖(v0, w0)‖

FN
2−2α+ n

p′ +
λ
p

p,λ,q

Then, if we choose T small enough such that


C5δ

α+ α
ρ0 T

1
ρ0 ‖(v0, w0)‖

FN
2−2α+ n

p′ +
λ
p

p,λ,q

≤ ε
4

and

C5δ
α+ α

ρ′0 T
1
ρ′0 ‖(v0, w0)‖

FN
2−2α+ n

p′ +
λ
p

p,λ,q

≤ ε
4 .
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i.e, 

T ≤

 ε

4C5δ
α+ α

ρ0 ‖(v0, w0)‖
FN

2−2α+ n
p′ +

λ
p

p,λ,q


ρ0

and

T ≤

 ε

4C5δ
α+ α

ρ′0 ‖(v0, w0)‖
FN

2−2α+ n
p′ +

λ
p

p,λ,q


ρ′0

So, if we choose

T ≤ min
(( ε

4C5δ
α+ α

ρ0 ‖(v0, w0)‖
FN

2−2α+ n
p′ +

λ
p

p,λ,q

)ρ0
,

( ε

4C5δ
α+ α

ρ′0 ‖(v0, w0)‖
FN

2−2α+ n
p′ +

λ
p

p,λ,q

)ρ′0)

then ∥∥∥(e−t(−∆)
α
2 v0,1, e

−t(−∆)
α
2 w0,1

)∥∥∥
XT
≤ ε

2
.

This result with (5.2) yields that∥∥∥(e−t(−∆)
α
2 v0, e

−t(−∆)
α
2 w0

)∥∥∥
XT
≤ ε.

Thus for any arbitrary (v0, w0) ∈ FN 2−2α+ n
p′+

λ
p

p,λ,q , (1) has a
unique local solution in B̄(0, 2ε) = {x ∈ XT : ‖x‖XT ≤
2ε} .

Regularity:
We know if (v, w) ∈ XT × XT is a solution of (1), then

we can show that

∇ · (v∇φ) , ∇ · (w∇φ) ∈ L1

(
0, T ;FN 2−2α+ n

p′+
λ
p

p,λ,q

)
.

By using the definition of the Fourier-Besov-Morrey spaces,
we have

‖v (t1)− v (t2)‖q
FN

2−2α+ n
p′+

λ
p

p,λ,q

≤
∑
j≤N

(
2j(2−2α+ n

p′+
λ
p ) ‖v̂j (t1)− v̂j (t2)‖Mλ

p

)q
+2
∑
j>N

(
2j(2−2α+ n

p′+
λ
p ) ‖v̂j(t)‖L∞(I,Mλ

p)

)q
,

where v̂j = ϕj v̂. For any small constant ε > 0, let N be large
enough such that∑

j>N

2j(2−2α+ n
p′+

λ
p )q ‖v̂j(t)‖qL∞(I,Mλ

p)
≤ ε

4
.

According to Taylor’s formula and using the same arguments
as [ [21], Proposition 2.3], we get∑

j≤N

(
2j(2−2α+ n

p′+
λ
p ) ‖v̂j (t1)− v̂j (t2)‖Mλ

p

)q
. |t1 − t2|q

∑
j≤N

2j(2−2α+ n
p′+

λ
p )q
∥∥∥( ˆ∂tu)j

∥∥∥q
L1(I,Mλ

p)

. |t1 − t2|q × ‖∂tu‖q
L1

(
0,T ;FN

2−2α+ n
p′+

λ
p

p,λ,q

)

. |t1 − t2|q ×
(
‖∆v‖q

L1

(
0,T ;FN

2−2α+ n
p′+

λ
p

p,λ,q

)

+ ‖∇ · (v∇φ)‖q
L1

(
0,T ;FN

2−2α+ n
p′+

λ
p

p,λ,q

) )
. |t1 − t2|q ×

(
‖v‖q

L1

(
0,T ;FN

2−α+ n
p′+

λ
p

p,λ,q

)

+ ‖∇ · (v∇φ)‖q
L1

(
0,T ;FN

2−2α+ n
p′+

λ
p

p,λ,q

) )
. |t1 − t2|q ×

(
‖v0‖q

FN
2−2α+ n

p′+
λ
p

p,λ,q

+2 ‖∇ · (v∇φ)‖q
L1

(
0,T ;FN

2−2α+ n
p′+

λ
p

p,λ,q

) ).
Thus, we obtain the continuity of v in time t.
Similary, we use the same discusion to get the continuity of
w in time t.
Hence (v, w) ∈ C

(
0, T ;FN 2−2α+ n

p′+
λ
p

p,λ,q

)
, and we are done.
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Abstract— This paper is mainly concerned with existence of
mild solution for a neutral functionnal integrodiferential inclusion
with finit delay. The results are bobtained by using a fixed point
theoreme for condensing multivalued maps.

Index Terms—integrodifferentional inclusion, Selection, Fixed
point theory, neutral functional differential and integrodifferen-
tial inclusion, convex multivalued map.

I. INTRODUCTION:
In this paper we prove the existence of mild solution,

for a neutral functional integrodifferentional inclusion with
finite delay. In section 2 we will recall briefly some basic
definitions and preliminary facts which will be used in the
following section. Section 3 deals with the existence of mild
solution for a neutral functional integrodifferentional inclusion
with finite delay of the forme :

d

dt
F(t, ut) ∈ AF(t, ut) +

∫ t

0

B(t− s)F(s, us)ds

+G(t, ut) for t ∈ [0, b]

u0 = ϕ(θ) for θ ∈ J0 = [−r, 0],

(1)

where
(
A,D(A)

)
is the infinitesimal generator of a

compact resolvant operator R(t), t ≥ 0, in Banach space
X , for t ≥ 0 B(t) is a closed linear operator with domain
D(B), such that D(A) ⊂ D(B). G : J × C(J0, X) −→ 2X

(J0 = [−r, 0]), is a bounded, closed, convex, multivalued map
and X a real Banach space.

For any continus function u defined on J1 = [−r, b], and
any t ∈ J , we denot by ut the element of C(J0, X) defined
by:

ut(θ) = u(t+ θ) = ϕ(θ), θ ∈ J0 = [−r, 0],

Here ut(.) represents the history of the state from time t−r,
up to the present time t, and F : J×C(J0, X) −→ X defined
by :

F(t, ϕ) = ϕ(0)− F (t, ϕ) = u(t)− F (t, ut), ∀(t, ϕ) ∈
J × C(J0, X),

Where F : J × C(J0, X) −→ X .
Wen B = 0 we refer to the paper of K.HILAL and K.EZZINBI
[1] and the paper of K.EZZINBI and X.FU [2].
This paper is motivated by the recents results of [1] and
BENCHOHRA [3]. Here we compose the above results and

prove the existence of mild solution for our probleme (1),
relying on a fixed point theorem for condensing maps due to
Martelli [4].

II. PRELIMINARIES:

In this section, we introduce some basic definitions,
notations, and lemmas that are used throughout this paper.
C(J,X) is the Banach space of continuous functions from

J into X with the norm :

‖u‖∞ := sup{|u(t)|; t ∈ J}

A measurable function u : J −→ X is Bochner integrable
if and only if |u| is Lebesgue integrable (For properties of the
Bochner integral see Yosida [5]).
L1(J,X) denotes the Banach space of continuous functions
u : J −→ X which are Bochner integrable normed by :

‖u‖L1 :=

∫ T

0

|u(t)|dt for all u ∈ L1(J,X)

Lemma 2.1: :
Let (X, ‖.‖) be a Banach space. A multivalued map G :

X −→ 2X is convex closed, if G(x) is convex closed, for
all x ∈ X; and G is bounded on bounded sets, if G(B) =
∪
x∈B

G(x) is bounded in X , for any bounded set B of X .
Theorem 2.1: :
G is said to be completely continuous if G(B) is rela-

tively compact, for every bounded subset B ⊂ X .
Theorem 2.2: :
G is called upper semi-continuous (u.s.c) on X, if for

each x ∈ X , the set G(x) is a nonempty, closed subset of X ,
and if for each open set B of X containing G(x), there exists
an open neighborhood V of x such that G(V ) ∈ B.

Lemma 2.2: :
If the multivalued map G is completely continuous with

nonempty compact values, then G is u.s.c. if and only if G has
a closed graph

(
i.e xn −→ x, yn −→ y; yn ∈ G(xn) imply

y ∈ G(x)
)

.
Definition 2.1: :

an upper semi-continuous multivalued map G : X −→
X is said to be condensing if for any subset B ⊂ X with
α(B) 6= 0, we have α

(
G(B)

)
< α

(
B
)

, where α denotes the
Kuratowski measure of noncompactness [6].

Lemma 2.3: :
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A completely continuous multivalued map is a condens-
ing map

Theorem 2.3: :(Arzela–Ascoli’s theorem)
Let K be a compact space and (E, d) a metric space.

A ⊂ C(K,E) is relatively compact (i.e. included in a compact)
if and only if, for any x of K:
• A is equicontinuous in x, i.e. for everything ε > 0, there

exist a neighborhood V of x such that : ∀f ∈ A,∀y ∈
V d(f(x), f(y)) < ε

• The set A(x) = {f(x); f ∈ A} is relatively compact.
In the following BCC(X) denotes the set of all nonempty

bounded, closed and convex subsets of X
Theorem 2.4: :(Leray-schauder’s fixed point)

Let X be a Banach space and N : X −→ BCC(X) an
u.s.c condensing map. If the set :

Ω := {u ∈ X : λu ∈ Nu for λ > 1}
is bounded, then N has a fixed point.

Definition 2.2: :(Finite delay differential equation)
Let r > 0; and Cr = C

(
[−r, 0],Rn

)
, the Banach space

of continuous functions,
ϕ : [−r, 0] −→ Rn with ‖ϕ‖∞ = sup

θ∈[−r,0]
‖ϕ(θ)‖. We denot

by ut element of Cr defined by :
ut(θ) = u(t+ θ) = ϕ(θ), θ ∈ J0 = [−r, 0],

Let f : R+ × Cr −→ R, a general form of the finit-delay
differential equation is :

d

dt
u(t) = f(t, ut)

Definition 2.3: :(Resolvent operator [2] )
A family of bounded linear operators R(t) ∈ B(X),(

B(X) is the Banach space of all linear bounded operator
from X into X

)
, for t ∈ J is called a resolvent operator for :

du

dt
= Au(t) +

∫ t

0

f(t− s)u(t)ds

If:
1- R(0) = I , the identity operator on X , and ‖R(t)‖ 6M

with M > 1.
2- For all u ∈ X; R(t)u is continuous for t ∈ J
3- R(t) ∈ B(Y ); t ∈ J ; where Y is the Banach space

formed from D(A), for y ∈ Y,R(.)y ∈ C1(J,X) ∩
C(J, Y ) and :

R
′
(t)y = AR(t)y +

∫ t

0

f(t− s)R(s)yds =

R(t)Ay +

∫ t

0

R(t− s)f(s)yds.

III. EXISTANCE RESULTS :

In order to define the concept of mild solution for (1),
by comparaison with the evolution problem

dv

dt
= Av(t) +

∫ t

0

f(t− s)v(t)ds+ h(t) ; v(0) = a

We asssociate (1) to the integral equation :

u(t) = R(t)F(0, ϕ) + F (t, ut) +

∫ t

0

R(t− s)g(s)ds t ∈
[0, b]

Where g ∈ S
G,u

= {g ∈ L1(J,X) : g(t) ∈ G(t, ut); t ∈
J}

Definition 3.1: :
A function u ∈ C([−r, b], X) is called a mild solution of

(1) if :
1- u(0) = ϕ(θ); θ ∈ [−r, 0].
2- There exist a function g ∈ S

G,u
such that :

u(t) =

R(t)F(0, ϕ)+F (t, ut)+

∫ t

0

R(t−s)g(s)ds t ∈ [0, b]

Where, F(0, ϕ) = ϕ(θ)− F (t, ϕ)

Assume that :
(H1)- A is the infinitesimal generator of a compact resolvent

operator R(t) in X such that :
‖R(t)‖ ≤M1 for some M1 ≥ 1 ; t ∈ J

(H2)- There exists constants 0 ≤ c1 < 1 and c2 ≥ 0 such that :
|F (t, u)| ≤ c1‖u‖+ c2; t ∈ J u ∈ C(J0, X)

(H3)- ϕ ∈ C([−r, 0], X) is completely continuous and there
exists a constant M2 such that:

‖ϕ‖ ≤M2

(H4)- G : J × C(J0, X) −→ BCC(X) ; (t, u) −→ G(t, u)
is measurable with respect to t for each u ∈ C(J0, X),
u.s.c with respect to u for each t ∈ J ; and for each fixed
u ∈ C(J0, X) the set :
S

G,u
= {g ∈ L1(J,X) : g(t) ∈ G(t, ut); t ∈ J}

is nonempty.
(H5)- ‖G(t, u)‖ := sup{|g| : g ∈ G(t, u)} ≤ p(t)Ψ(‖u‖) for

all t ∈ J and all u ∈ C(J0, X), where p ∈ L1(J,R+)
and Ψ : R+ −→ [0,+∞) is continuous and increasing
with : ∫ b

0

ω(s)ds <

∫ ∞
c

dτ

τ + Ψ(τ)
Where
c =

1

1− c1
{M1

(
M2(1 + c1) + c2

)
+ c2} and ω(s) =

1

1− c1
M1p(t)

(H6)- The function F is completly continuous and for any
bounded set B ⊆ C(J1, X) the set {t −→ F (t, ut) :
u ∈ B} is equicontinuous in C.
The following lemma is crucial in the proof of our

existence results.
Lemma 3.1: :

Let I be a compact real interval and X be a Banach
space. Let G be a multivalued map satisfying (H4). And let
Γ be a linear continuous mapping from L1(I,X) to C(J,X).
Then the operator :

Γ ◦ S
G

: C(I,X) −→ BCC
(
C(I,X)

)
; u −→(

Γ ◦ S
G

)
(u) = Γ

(
S

G

)
Is closed graph operator in C(I,X)× C(I,X)

Our main result may be presented as the following
theorem.

Theorem 3.1: :
Assume that hypotheses (H1) − (H6) hold, then the

problem (1) has at least one mild solution on J1.
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Proof 3.1: :
Let C := C(J1, X) be the Banach space of continuous

function from J1 into X endowed with the sup-norm :
‖u‖∞ := sup{|u| : t ∈ [−r, b]}; for u ∈ C

Transform the problem into a fixed point problem. Con-
sider the multivalued map, N : C −→ 2C defined by :

Nu :=

{
h ∈ C :

h(t) =


ϕ(t); t ∈ J0
R(t)F(0, ϕ) + F (t, ut)

+
∫ t
0
R(t− s)g(s)ds; t ∈ J

}
Where : g ∈ S

G,u
= {g ∈ L1(J,X) : g(t) ∈

G(t, ut); t ∈ J}

We have that the fixed points of N are mild solutions to (1).
Now we shall prove that N is a completely continuous
multivalued map, u.s.c, with convex closed values. The proof
will be given in several steps.

Step 1 : Nu is convex for each u ∈ C.
Indeed, if h1, h2 belong to Nu, then there exist g1, g2 ∈ SG,u

such that for each t ∈ J we have:

h1(t) = R(t)F(0, ϕ) + F (t, ut) +

∫ t

0

R(t− s)g1(s)ds

and

h2(t) = R(t)F(0, ϕ) + F (t, ut) +

∫ t

0

R(t− s)g2(s)ds

Let 0 ≤ k ≤ 1. Then for each t ∈ J we have :(
kh1 + (1 − k)h2

)
(t) = R(t)F(0, ϕ) + F (t, ut) +∫ t

0

R(t− s)
(
kg1(s) + (1− k)g2(s)

)
ds

Thus kh1 + (1− k)h2 ∈ Nu
(

because S
G,u

is convex
)
,

then Nu is convex for each u ∈ C

Step 2 : We will prove that N is a completely continuous
operator. Using (H6) it suffices to show that the operator

N1 : C −→ 2C defined by : N1u :=

{
h1 ∈ C :

h1(t) =


ϕ(t); t ∈ J0
R(t)F(0, ϕ)

+
∫ t
0
R(t− s)g(s)ds; t ∈ J

}
is completly continuous .

i- N1 map bounded set into bounded set in C :
Indeed, it is enough to show that there exists a positive constant
l such that for each h1 ∈ N1u; u ∈ Bq = {u ∈ C : ‖u‖∞ ≤
q} we have ‖h1‖∞ ≤ l .
If h1 ∈ N1u then there exist g ∈ S

G,u
, such that for every

t ∈ J we have :

h1(t) = R(t)F(0, ϕ) +

∫ t

0

R(t− s)g(s)ds

By (H1)− (H3) , and (H5) we have for each t ∈ J :

|h1(t)| ≤ ‖R(t)F(0, ϕ)‖+

∫ t

0

‖R(t− s)g(s)‖ds

≤M1[c1M2 + c2]

+M1 sup
u∈[0,q]

Ψ(u)
(∫ t

0

p(s)ds
)

Then for each h ∈ N1(Bq):

‖h1(t)‖∞ ≤M1[c1M2 + c2]

+M1 sup
u∈[0,q]

Ψ(u)
(∫ b

0

p(s)ds
)

Then N1 is bounded.

ii- N1 maps bounded set into equicontinuous sets of C:

Let τ1, τ2 ∈ J ; τ1 < τ2, and Bq be bounded set of C; for
each u ∈ Bq and h1 ∈ N1u; there exist g ∈ S

G,u
such that :

h1(t) = R(t)F(0, ϕ) +

∫ t

0

R(t− s)g(s)ds; t ∈ J

Thus,

h1(τ2)− h1(τ1) = R(τ2)F(0, ϕ)

+

∫ τ2

0

R(τ2 − s)g(s)ds−R(τ1)F(0, ϕ)

−
∫ τ1

0

R(τ1 − s)g(s)ds

=
(
R(τ2)−R(τ1)

)
F(0, ϕ)

+

∫ τ1

0

(
R(τ2 − s)−R(τ1 − s)

)
g(s)ds

+

∫ τ2

τ1

R(τ2 − s)g(s)ds

Then

‖h1(τ2)− h1(τ1)‖ ≤ ‖R(τ2)−R(τ1)‖

+

∫ τ1

0

‖R(τ2 − s)

−R(τ1 − s)‖‖g(s)‖ds

+

∫ τ2

τ1

‖R(τ2 − s)‖‖g(s)‖ds

As τ2 −→ τ1 the right-hand side of the above inequality
tends to zero, implies that N1u is equicontinuous on J1

iii- V (t) = {h1(t);h1 ∈ N1(Bq)} is relatively compact
on X:
By (H4) V (t) is relatively compact for t = 0; let 0 ≤ t ≤ b
be fixed and let ε be a real number satisfying 0 ≤ ε < t for
u ∈ Bq and g ∈ S

G,u
such that :

h1(t) = R(t)F(0, ϕ) +

∫ t

0

R(t− s)g(s)ds; t ∈ J
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and,

h1,ε(t) = R(t)F(0, ϕ) +

∫ t−ε

0

R(t− s)g(s)ds; t ∈ J

The set Vε(t) = {h1,ε(t);h1,ε ∈ N1(Bq)} is relatively
compact beceuse R(t) is compact then;

‖h1(t)− h1,ε(t)‖ =

∫ t

t−ε
R(t− s)g(s)‖

≤M1 sup
u∈[0,q]

Ψ(u)

∫ t

0

p(s)ds.ε

≤ rε

With; r = M1 sup
u∈[0,q]

Ψ(u)

∫ b

0

p(s)ds, this implies that

V (t) is relativement compact thus by (i), (ii), (iii) and by
Arzela-Ascoli theorem, we can deduce that N1 is completely
continuous then N : C −→ 2C is completely continuous.

Step 3 : N has a closed graph.
Let un −→ u, hn ∈ Nun and hn −→ h, we shall prove that
h ∈ Nu.
hn ∈ Nun then there exists gn ∈ SG,un

such that

hn(t) = R(t)F(0, ϕ) + F (t, unt)

+

∫ t

0

R(t− s)gn(s)ds; t ∈ J

We should prove that g ∈ S
G,u

such that for each t ∈ J
:

h(t) = R(t)F(0, ϕ) + F (t, ut)

+

∫ t

0

R(t− s)g(s)ds; t ∈ J

Since F is continuous, we have that:

‖
(
hn(t)−R(t)F(0, ϕ)− F (t, unt)

)
−
(
h(t)−R(t)F(0, ϕ)− F (t, ut)

)
‖∞ −→ 0

As n −→∞.
Consider the linear operator :

Γ : L1(J,X) −→ C(J,X)

g −→ Γ(g)(t) =

∫ t

0

R(t− s)g(s)ds

From Lemma 3.1; Γ ◦ S
G

is a closed graph operator then we
have that :

hn(t)−R(t)F(0, ϕ)− F (t, unt) ∈ Γ
(
S

G,un

)
Since un −→ u, and by the lemma 3.1 :

h(t)−R(t)F(0, ϕ)− F (t, ut) ∈ Γ
(
S

G,u

)

It follows that g ∈ S
G,u

such that

h(t) = R(t)F(0, ϕ) + F (t, ut)

+

∫ t

0

R(t− s)g(s)ds; t ∈ J

From the Step 1, step 2 and step 3 we deduce that N is
u.s.c, completely continuous then by lemma (2.3), N is a
condensing, bounded, closed and convex operator. In order to
prove that N has a fixed point, we need one more step.
Step 4 : The set Ω := {u ∈ X : λu ∈ Nu for λ > 1}
is bounded. Let u ∈ Ω. Then λu ∈ Nu, thus there exists
g ∈ S

G,u
such that :

u(t) = λ−1R(t)F(0, ϕ) + λ−1F (t, ut)

+ λ−1
∫ t

0

R(t− s)g(s)ds

By (H1)− (H3)and (H5) we have :

|u(t)| ≤M1

(
(1 + c1)M2 + c2

)
+ c1‖ut‖+ c2

+M1

∫ t

0

p(s)Ψ(‖us‖)ds

Consider the function defined by :

µ(t) = sup{|u(s)| : −r ≤ s ≤ t}; 0 ≤ t ≤ b

Let t∗ ∈ [−r, t] be such that µ(t) = |u(t∗)|.
? If t∗ ∈ J0 = [−r, 0] then :

µ(t) ≤ ‖φ‖ ≤M2

?? If t∗ ∈ J = [0, b] then :

µ(t) ≤M1

(
(1 + c1)M2 + c2

)
+ c1µ(t) + c2

+M1

∫ t

0

p(s)Ψ
(
µ(s)

)
ds

then;

µ(t) ≤ 1

1− c1

(
M1

(
(1 + c1)M2 + c2

)
+ c2

+M1

∫ t

0

p(s)Ψ
(
µ(s)

)
ds

)
since M1 ≥ 1 Let us take the right-hand side of the above
inequality as ν(t) . Then we have.

c = ν(0) =
1

1− c1

(
M1

(
M2(1 + c1) + c2

)
+ c2

)
and

µ(t) ≤ ν(t) ; ∀t ∈ J then,

ν′(t) =
1

1− c1
M1p(t)Ψ

(
µ(t)

)
By using H(5) we get :

ν′ < ω(t)Ψ
(
ν(t)

)
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This implies that∫ ν(t)

ν(0)=c

dτ

Ψ(τ)
<

∫ b

0

ω(s)ds <

∫ ∞
c

dτ

τ + Ψ(τ)

This implies that there exists a constant K such that ν ≤ K,
t ∈ J and µ ≤ K, t ∈ J . Since for every t ∈ J we have
‖ut‖ ≤ µ(t) then

‖u‖∞ := sup{|u(t)|;−r ≤ t ≤ b} ≤ K

Where K depends only on b and on the functions p and Ψ.
This shows that Ω is bounded.
As a consequence of theorem 2.4 (Leray-schauders’s fixed
point) we deduce that N has a fixed point which is a solution
of (1).
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Abstract—This work is related to investigate integral
solution of wave equation with fuzzy initial data under
generalized fuzzy Caputo derivative. For the concerned
investigation, we use the Fourier transform. The exact
solution is given in the case of γ = 2. Some examples
are presented to illustrate the results.

Index Terms—Generalized fuzzy derivative, Caputo
fractional derivative, Hukuhara difference, fuzzy fourier
transform.

I. Introduction

The present paper investigate the analytic solution
of the following problem

gH Dγ
t u(t, x)−g c2 ∂2

∂x2 u(t, x) = 0,

−∞ < x < ∞, t ≥ 0, 1 < γ < 2

u(0, x) = a(x)
∂
∂t u(0, x) = b(x)

where a and b are two absolutely valued-functions
in E1. −g is the generalized Hukuhara difference.

gH D is the generalized fuzzy fractional caputo’s
derivative.

In 1965 L.Zadeh [13] introduced the basic ideas of
the fuzzy set theory, as an extension of the classical
notion of set. The authors in [6] give a generaliza-
tion of the Hukuhara difference which guaranteed
the existence of this is for two segments in R. As
consequance in the same work Bede and Stefanini
presented the generalized derivative of a set valued-
functions. Agarwal et al. [1] are the pioneers work-
ing in fuzzy fractional (DEs). They formulated the

Riemann-Liouville differentiability notion as the base
to define the concept of fuzzy fractional DEs. After
that, they proved the existence of solutions of fuzzy
fractional integral equations (IEs) under compactness
type conditions using the Hausdorff measure of non-
compactness in the paper [2]. Allahviranloo et all in
[3] presented two new results on the existence of two
kinds of gH−weak solutions of these problems and
indicated the boundedness and continuous depen-
dence of solutions on the initial data of the problems.
In [5] the authors prove the existence and uniqueness
theorems for non-linear fuzzy fractional Fredholm
integro-differential equations under fractional gen-
eralized Hukuhara derivatives in the Caputo sense.
From the idea of [5] we will try to prove the existence
and uniqueness of fuzzy fractional wave equation.

This paper is organized as follows. In section 2
we recall some concepts concerning the fuzzy metric
space. the generalized derivative take place in the
section 3. In section 4 we give the concept of fuzzy
Fourier transform and we presented some properties.
We presented the solution of the fuzzy wave equation
in section 5. Finally in section 6 two examples are
given to illustrate the usefulness of our main results.

II. preliminaries

In this section, we present some definitions and
introduce the necessary notation, which will be used
throughout the paper.
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We denote E1 the class of function defined as
follows:

E1 =
{

u : R→ [0, 1], u satisfies (1− 4) below
}

1) u is normal, i.e. there is a x0 ∈ R such that
u(x0) = 1;

2) u is a fuzzy convex set;
3) u is upper semi-continuous;
4) u closure of {x ∈ Rn, u(x) > 0} is compact

For all α ∈ (0, 1] the α-cut of an element of E1 is
defined by

uα =
{

x ∈ R, u(x) ≥ α
}

By the previous properties we can write

uα = [u(α), u(α)]

By the extension principal of Zadeh we have

(u + v)α = uα + vα;

(λu)α = λuα

For all u, v ∈ E1 and λ ∈ R

The distance between two element of E1 is given
by (see [4])

d(u, v) = sup
α∈(0,1]

max
{
|u(α)− v(α)|, |u(α)− v(α)|

}
The metric space (E1, d) is complete, separable

and locally compact and the following properties for
metric d are valid:

1) d(u + v, u + w) = d(u, v);
2) d(λu, λv) = |λ|d(u, v);
3) d(u + v, w + z) ≤ d(u, w) + d(v, z);

Remark II.1 The space (E1, d) is a linear normed space
with ‖u‖ = d(u, 0).

Definition II.2 [10] A complex fuzzy number is a
mapping z : C→ [0, 1] with the following properties:

1) z is continuous;

2) zα, α ∈ (0, 1] is open, bounded, connected and
simply connected;

3) z1 is non-empty, compact, arcwise connected and
simply connected.

We denote the set of all fuzzy complex number by C1.

Definition II.3 [6] The generalized Hukuhara difference
of two fuzzy numbers u, v ∈ E1 is defined as follows

u−g v = w⇔

u = v + w

or v = u + (−1)w

In terms of α-levels we have

(
u−g v

)α
=
[
min {u(α)− v(α), u(α)− v(α)} ,

max {u(α)− v(α), u(α)− v(α)}
]

and the conditions for the existence of w = u−g

v ∈ E1 are

case (i)


w(α) = u(α)− v(α) and w(α) = u(α)− v(α)

with w(α) increasing,

w(α) decreasing, w(α) ≤ w(α)

case (ii)


w(α) = u(α)− v(α) and w(α) = u(α)− v(α)

with w(α) increasing,

w(α) decreasing, w(α) ≤ w(α)

for all α ∈ [0, 1].

Throughout the rest of this paper, we assume that
u−g v ∈ E1

Proposition II.4 [11]

‖u−g v‖ = d(u, v)

Since ‖.‖ is a norm on En and by the proposition
(II.4) we have

Proposition II.5

‖λu−g µu, 0‖ = |λ− µ|‖u‖

Let f : [a, b] ⊂ R → E1 a fuzzy-valued function.
The α-level of f is given by

f (x, α) =
[

f (x, α), f (x, α)
]
, ∀x ∈ [a, b], ∀α ∈ [0, 1].
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Definition II.6 [6] Let x0 ∈ (a, b) and h be such that
x0 + h ∈ (a, b), then the generalized Hukuhara derivative
of a fuzzy value function f : (a, b)→ E1 at x0 is defined
as

lim
h→0

∥∥∥ f (x0 + h)−g f (x0)

h
−g f ′gH(x0)

∥∥∥ = 0 (II.1)

If fgH(x0) ∈ E1 satisfying (II.1) exists, we say that f is
generalized Hukuhara differentiable (gH-differentiable for
short) at x0.

Definition II.7 [6] Let f : [a, b]→ E1 and x0 ∈ (a, b),
with f (x, α) and f (x, α) both differentiable at x0.
We say that

1) f is [(i)− gH]-differentiable at x0 if

f ′i,gH(x0) =
[

f ′(x, α), f
′
(x, α)

]
(II.2)

2) f is [(ii)− gH]-differentiable at x0 if

f ′ii,gH(x0) =
[

f
′
(x, α), f ′(x, α)

]
(II.3)

Theorem II.8 Let f : J ⊂ R → E1 and g : J → R and
x ∈ J. Suppose that g(x) is differentiable function at x
and the fuzzy-valued function f (x) is gH-differentiable
at x. So

( f g)′gH = ( f ′g)gH + ( f g′)gH

Proof Using (II.5), for h enough small we get∥∥∥ f (x + h)g(x + h)−g f (x)g(x)
h

−g
(
( f ′(x)g(x))gH + ( f (x)g′(x))gH

) ∥∥∥
=
∥∥∥ f (x+h)g(x+h)−g f (x)g(x+h)+ f (x)g(x+h)−g f (x)g(x)

h

−g
(
( f ′(x)g(x))gH + ( f (x)g′(x))gH

) ∥∥∥
=
∥∥∥ ( f (x+h)−g f (x))g(x+h)+ f (x)(g(x+h)−gg(x))

h

−g
(
( f ′(x)g(x))gH + ( f (x)g′(x))gH

) ∥∥∥
≤
∥∥∥ ( f (x+h)−g f (x))g(x+h)

h −g
(
( f ′(x)g(x))gH

) ∥∥∥
+
∥∥∥ ( f (x)(g(x+h)−gg(x))

h −g
(
( f (x)g′(x))gH

) ∥∥∥
≤
∥∥∥ ( f (x+h)−g f (x))

h g(x + h)−g
(
( f ′(x)g(x))gH

) ∥∥∥
+
∥∥∥ f (x) ((g(x+h)−gg(x))

h −g
(
( f (x)g′(x))gH

) ∥∥∥
which complet the proof by passing to limit.

Definition II.10 [6] We say that a point x0 ∈ (a, b), is
a switching point for the differentiability of f , if in any

neighborhood V of x0 there exist points x1 < x0 < x2

such that

1) type (1). at x1 (II.2) holds while (II.3) does not hold
and at x2 (II.3) holds and (II.2) does not hold, or

2) type (2). at x1 (II.3) holds while (II.2) does not hold
and at x2 (II.2) holds and (II.3) does not hold.

Definition II.11 [3] Let f : (a, b) → E1. We say that
f (x) is gH-differentiable of the 2nd-order at x0 whenever
the function f (x) is gH-differentiable of the order i, i =
0, 1, at x0, (( f (x0))

(i)
gH ∈ E1), moreover there isn’t any

switching point on (a, b). Then there exists ( f )′′gH(x0) ∈
E1 such that

lim
h→0

∥∥∥ f ′(x0 + h)−g f ′(x0)

h
, f ′′gH(x0)

∥∥∥ = 0

Definition II.12 [3] Let f : [a, b]→ E1 and f ′gH(x) be
gH-differentiable at x0 ∈ (a, b), moreover there isn’t any
switching point on (a, b) and f (x, α) and f (x, α) both
differentiable at x0. We say that

• f ′ is [(i)− gH]-differentiable at x0 if

f ′′i,gH(x0) =
[

f ′′(x, α), f
′′
(x, α)

]
• f ′ is [(ii)− gH]-differentiable at x0 if

f ′′ii,gH(x0) =
[

f
′′
(x, α), f ′′(x, α)

]
Definition II.13 [8] Let f : [a, b] → E1. We say that
f (x) is fuzzy Riemann integrable to I ∈ E1 if for any
ε > 0, there exists δ > 0 such that for any division
P = {[u, v]; ξ} with the norms ∆(P) < δ, we have

d

(
∗
∑
p
(v− u) f (ξ),I

)
< ε

where ∑∗p denotes the fuzzy summation. We choose to
write I =

∫ b
a f (x)dx.

Theorem II.14 [6] If f is gH-differentiable with no
switching point in the interval [a, b] then we have∫ b

a
f (t)dt = f (b)−g f (a)

Theorem II.15 [12] Let f (x) be a fuzzy-valued func-
tion on (−∞, ∞) and it is represented by f (x, α) =[

f (x, α), f (x, α)]for any fixed α ∈ [0, 1]. Assume

that | f (x, α)| and | f (x, α)| are Riemann integrable on
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(−∞, ∞) for all α ∈ [0, 1]. Then f (x) is improper fuzzy
Riemann-integrable on (−∞, ∞) and the improper fuzzy
Riemann integral is a fuzzy number. Furthermore, we
have∫ ∞

−∞
f (x)dx =

[∫ ∞

−∞
f (x, α)dx,

∫ ∞

−∞
f (x, α)dx

]
From this theorem we can discuss the Fuzzy Rie-

mann’s improper integral

Lemma II.16 Let f : R × R+ → E1, given by
f (x, t; α) = [ f (x, t; α), f (x, t; α)], and let a ∈ R+

If
∫ ∞

a f (x, t; α)dt and
∫ ∞

a f (x, t; α)dt are converges then

∫ ∞

a
f (x, t; α)dt ∈ E1

Proof Just use the conditions (II.1).

Theorem II.18 Let f : R×R+ → E1 be fuzzy-valued
function such that f (x, t; α) = [ f (x, t; α), f (x, t; α)].
Suppose that for each x ∈ [a, ∞), the fuzzy integral∫ ∞

c f (x, t)dt is convergent and moreover
∫ ∞

a f (x, t)dx as
a function of t is convergent on [c, ∞). Then

∫ ∞

c

∫ ∞

a
f (x, t)dxdt =

∫ ∞

a

∫ ∞

a
f (x, t)dtdx

Proof Applying the theorem of Fubini-Tonelli [7] to these
two functions f (x, t; α) and f (x, t; α), and use the condi-
tions (II.1)

Theorem II.20 Suppose both, f (x, t) and ∂xgH f (x, t),
are fuzzy continuous in [a, b]× [c, ∞). Suppose also that
the integral converges for x ∈ R, and the integral∫ ∞

c f (x, t)dt converges uniformly on [a, b]. Then F is gH-
differentiable on [a, b] and

F′gH(x) =
∫ ∞

c
∂xgH f (x, t)dt

Proof The continuity of ∂xgH f (x, t) on [a, b] by the con-
vergence domainee theorem of to f (x, t; α) and f (x, t; α)

and use the condition (II.1).

According to the theorem (II.8) we get

Theorem II.22 Let f : [a, b] → E1 and g : [a, b] → R

are two differentiable functions ( f is gH-differentiable),
then ∫ b

a
f ′gH(x)g(x)dx = f (b)g(b)−g f (a)g(a)

−g

∫ b

a
f (x)g′(x)dx

Remark II.23 If f , g ∈ AE1
with lim

|x|→∞
f (x) = 0,

lim|x|→∞ g(x) = 0 then∫ ∞

−∞
f ′gH(x)g(x)dx =

∫ ∞

−∞
f (x)g′(x)dx

III. Fuzzy generalized Hukuhara partial

differentiation

In this section f : D ⊂ R×R+ → E1 is called the
two variable fuzzy-valued function. The parametric
representation of the fuzzy-valued function fis ex-
pressed by f (x, t, α) =

[
f (x, t, α), f (x, t, α)

]
Definition III.1 [3] Let f : D ⊂ R × R+ → E1

and (x0, t0) ∈ D. Then first generalized Hukuhara
partial derivative ([gH− p]-derivative for short) of f with
respect to variables x, t are the functions ∂xgH f (x0, t0) and
∂tgH f (x0, t0) given by

lim
h→0

∥∥∥ f (x0 + h, t0)−g f (x0, t0)

h
−g ∂xgH f (x0, t0)

∥∥∥ = 0

and

lim
h→0

∥∥∥ f (x0, t0 + h)−g f (x0, t0)

h
, ∂xgH f (x0, t0)

∥∥∥ = 0

provided that ∂xgH f (x0, t0), ∂tgH f (x0, t0) ∈ E1.

Definition III.2 [3] Let f (x, t) : D → E1, (x0, t0) ∈
D and f (x, t; α) and f (x, t; α) both partial differentiable
w.r.t. t at (x0, t0). We say that

• f (x, t) is [(i)− p]-differentiable w.r.t. t at (x0, t0) if

∂ti,gH f (x0, t0) =
[
∂t f (x0, t0; α), ∂t f (x0, t0; α)

]
(III.1)

∂tii,gH f (x0, t0) =
[
∂t f (x0, t0; α), ∂t f (x0, t0; α)

]
(III.2)
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We inspired of the definition (II.11) we presented
the following definition

Definition III.3 f : R × R+R → E1. We say that
the function t = h(x), is switching boundary for the
differentiability of f (x, t) with respect to t, if for all x
belongs to domain of h(x) and for all t ∈ R+, there exist
points t0 < t1 < t2 such that

1) at (x, t1) (III.1) holds while (III.2) does not hold and
at (x, t2) (III.2) holds and (III.1) does not hold, or

2) at (x, t1) (III.2) holds while (III.1) does not hold and
at (x, t2) (III.1) holds and (III.2) does not hold.

Theorem III.4 Consider f : R × R+ → E1 and u :
R → E1 are fuzzy-valued functions such that u(x; α) =

[u(x; α), u(x; α)]. Suppose that h : R → Rand p : R×
R+ → R+ is a differentiable function w.r.t. t and

∂t p(x, t) =

∂t p(x, t) ≥ 0, h1(t) < x < h2(t);

∂t p(x, t) < 0, h2(t) < x < h3(t)

and f (x, t) = p(x, t)u(x). Then ∂tgH f (x, t) exists and

∂tgH p(x, t) =

∂ti,gH p(x, t) ≥ 0, h1(t) < x < h2(t);

∂tii,gH p(x, t) < 0, h2(t) < x < h3(t)

In fact, the function h2(t) is switching boundary type 1
for differentiability of f (x, t) with respect to t.

Proof Since p is valued in R+ then we can set
f (x, t; α) = p(x, t)[u(x; α), u(x; α)], which implies that

∂tgH = ∂t p(x, t)[u(x; α), u(x; α)]

.
If h1(t) < x < h2(t) then

∂tgH = [∂t p(x, t)u(x; α), ∂t p(x, t)u(x; α)]

then f (x, t) is [(i)-differentiable] by report at t. In the
same if h2(t) < x < h3(t) we get

∂tgH = [∂t p(x, t)u(x; α), ∂t p(x, t)u(x; α)]

thus f (x, t) is [(ii)-differentiable] by report at t

IV. Generalized fuzzy fractional derivative

We present generalized fuzzy fractional derivative
and their properties.

Definition IV.1 [5] Let f ∈ AE1
([a, b]). The fuzzy

Riemann-Liouville integral of fuzzy-valued function f is
defined as following:

Iq f (t) =
1

Γ(1− q)

∫ t

a
(t− s)q−1 f (s)ds,

a < s < t, 0 < q < 1.

Definition IV.2 [5] Let f (x, t; α) =

[ f (x, t; α), f (x, t; α)] be a valued-fuzzy function.
The fuzzy Riemann-Liouville integral of f is defined as
following:

gH Dq
t f (t, x; α) =

1
Γ(1− q)

∫ t

a
(t− s)q f ′gH(s)ds,

a < s < t, 0 < q < 1

Also we say that f is [(i)− gH]-differentiable at t0 if

gH Dq
t f (x, t; α) = [Dq f (x, t; α), f (x, t; α)]

and f is [(ii)− gH]-differentiable at t0 if

gH Dq
t f (x, t; α) = [Dq f (x, t; α), f (x, t; α)]

Lemma IV.3 Let f ∈ AE1
and r ∈ (0, 1),then

1) If f is [(i) − gH]-differentiable at t0 then Dr f is
[(i)− gH]-differentiable at t0.

2) If f is [(ii)− gH]-differentiable at t0 then Dr f is
[(ii)− gH]-differentiable at t0

Proof Note that

gH Dq f (t) =
1

Γ(1− q)

∫ t

0
(t− s)−q f ′gH(s)ds

Since 1
Γ(1−q) (t− s)−q is a nonegative quantity whenever

0 < t < s.

Theorem IV.5 Let f ∈ AE1
and q ∈ (1, 2),then

gH Dq f (t) = gH Dq−1 f ′gH(t)

Proof We set f (t) = [ f (t; α), f (t; α)]and use lemma
(IV.3)
If f is [(i)-differentiable] then

f (t)′ = [ f ′(t; α), f
′
(t; α)]
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and

Dq−1 f (t)′ = [Dq−1 f ′(t; α), Dq−1 f
′
(t; α)]

If f is [(i)-differentiable] then

f (t)′ = [ f
′
(t; α), f ′(t; α)]

and

Dq−1 f (t)′ = [Dq−1 f
′
(t; α), Dq−1 f ′(t; α)]

Proposition IV.7 Let f : LE1
.

If Dγ−1 f (t) = g(t), then f (t) = f (0) + t f ′gH(0) +
Iγ−1g(t)

Proof We set f (t) = [ f (t; α), f (t; α)] and
g(t) = [g(t; α), g(t; α)].

1) If f is [(i)-differentiable] by theorem (IV.5)

Dγ−1 f (t) = [Dγ−1 f (t; α), Dγ−1 f (t; α)]

= [g(t; α), g(t; α)]

Which implies thatDγ−1 f (t; α) = g(t; α)

Dγ−1 f (t; α) = g(t; α)

By [9] we get f (t; α) = f (0; α) + t f ′(0; α) + Iγ−1g(t; α)

f (t; α) = f (0; α) + t f
′
(0; α) + Iγ−1g(t; α)

in the same if f is [(ii)-differentiable] then f (t; α) = f (0; α) + t f
′
(0; α) + Iγ−1g(t; α)

f (t; α) = f (0; α) + t f ′(0; α) + Iγ−1g(t; α)

Thus

f (t) = f (0) + t f ′gH(0) + Iγ−1g(t)

V. Fuzzy Fourier transform

In this section we discuss the Fourier transform in
the fuzzy case

Lemma V.1 If f ∈ AE1
then the map

F : R 7−→ C1

ω →
∫ ∞
−∞ f (x)e−iωwdx

is well defined

Proof We have ∥∥∥ f (x)e−iωw
∥∥∥ =

∥∥∥ f (x)
∥∥∥

Since f ∈ AE1
then f (x)e−iωw ∈ AC1

, which complet
the proof.

Remark V.3 In the same the map and under same as-
symption

F : R 7−→ C1

ω →
∫ ∞
−∞ f (x)eiωwdx

is well defined

By the previous lemma and remark we can give a
definition of the fuzzy Fourier transform

Definition V.4 Let f : R→ E1 a fuzzy-valued function.
The fuzzy Fourier transform of f , denote F ( f ) : R→ C1,
is given by

F ( f (x)) =
1√
2π

∫ ∞

−∞
f (x)e−iωwdx = F(ω)

Also the fuzzy inverse Fourier transform of F(ω) is given
by

F−1 (F(ω)) =
1√
2π

∫ ∞

−∞
f (x)eiωwdx = f (x)

By the conditions (II.1) we have

Remark V.5 Let f ∈ AC1
.

If f (x, t; α) = [ f (x, t; α), f (x, t; α)], then we can denote

F ( f (x, t; α)) =
[
F
(

f (x, t; α)
)

,F
(

f (x, t; α)
)]

with

[z1, z2] = [Re(z1), Re(z2)]× [Im(z1), Im(z2)]

and

F−1 ( f (x, t; α)) =
[
F−1

(
f (x, t; α)

)
,F−1

(
f (x, t; α)

)]
Using the conditions (II.1) and the linearity of

Fourier transform on a "crisp" function we get for
all a, b > 0

aF ( f (x, t; α)) + bF (g(x, t; α)) = F (a f (x, t; α) + bg(x, t; α))
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Theorem V.6 Let f ∈ AE1
such that lim

|x|→∞
f (x) = 0.

suppose that f ′gH ∈ AE1
. Then

F
(

f ′gH(x)
)
= iωF ( f (x))

Proof Using theorem (II.22) we get

F
(

f ′gH(x)
)
=

1√
2π

[
[ f (x)eiωx]∞−∞ −g (−iω)

∫ ∞
−∞ f (x)eiωxdx

]
Using the limite lim

|x|→∞
f (x) = 0 we get the result.

Corollary V.8 If f (k)gH ∈ AE1
and lim

|x|→∞
f (k)(x) = 0

for k = 0, 1, 2, then

F
(

f ′′gH(x)
)
= −ω2F ( f (x))

By the theorems (II.20) and (IV.5) we have

Theorem V.9

F
(

gH Dγ
t f (x, t)

)
= gH Dγ

t F ( f (x, t))

VI. The solution of the fuzzy fractional wave

equation

In this section consider the following problem

gH Dγ
t u(t, x)−g c2 ∂2

∂x2 u(t, x) = 0

0 < x, t < 1, 0 < γ < 1

u(0, x) = a(x),
∂
∂t u(0, x) = b(x)

(VI.1)

where a and b are belongs to AE1
,

Proposition VI.1 the problem (VI.1) has a unique solu-
tion.

Proof Let u(x, t) is fuzzy absolutely integrable, we define
the fuzzy Fourier transform of u(x, t) and its inverse by

F (u(x, t)) =
1√
2π

∫ ∞

−∞
u(x, t)e−iωtdx = U(ω, t)

F−1 (U(ω, t)) =
1√
2π

∫ ∞

−∞
U(ω, t)eiωtdω = u(x, t)

If Dγ
tgH

u(x, t), ∂xgH u(x, t) and ∂xxgH u(x, t) are fuzzy
absolutely integrable in (−∞, ∞) by using

F
(

gH Dγ
t u(t, x)

)
−g F

(
c2 ∂2

∂x2 u(t, x)
)
= 0

It follows from the corollary (V.8) that

F
(

c2 ∂2

∂x2 u(t, x)
)
= −c2ω2U(ω, t)

F
(

gH Dγ
t u(t, x)

)
= Dγ

t U(ω, t)

We get

gH Dγ
t U(ω, t) = −c2U(ω, t)

It follows that

gH Dγ−1
t U′gH(ω, t) = −c2U(ω, t)

Thus we have the following problem

gH Dγ−1
t U′gH(ω, t) = −c2U(ω, t) (VI.2)

U(ω, 0) = F (a(x)) (VI.3)
∂

∂t
U(ω, 0) = F (b(x)) (VI.4)

by lemma 3.2 [5] this problem has a unique solution given
by

U(ω, t) =U(ω, 0) + t
∂

∂t
U(ω, 0)−g

c2

Γ(γ− 1)

∫ t

0

∫ s

0
(s− τ)γ−2U(ω, τ)dτds

if u′ is [(i)-differentiable], and

U(ω, t) =U(ω, 0) + t
∂

∂t
U(ω, 0)+

c2

Γ(γ− 1)

∫ t

0

∫ s

0
(s− τ)γ−2U(ω, τ)dτds

if u′ is [(ii)-differentiable].
Which implies the existence and uniqueness of the solution
of the problem (VI.2) and by the inverse of Fourier
transform we get the existence and uniqueness of the
solution of (VI.1).

VII. Case γ = 2

In this section we set

u(x, t; α) = [u(x, t; α), u(x, t; α)]

a(x; α) = [a(x; α), u(x; α)]

b(x; α) = [b(x; α), b(x; α)]

If u′ is [(i)-differentiable] then

∂2

∂t2 u(x, t; α) = c2 ∂2

∂x2 u(x, t; α)

∂2

∂t2 u(x, t; α) = c2 ∂2

∂x2 u(x, t; α)
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which implies

u(x, t; α) = F(x− ct; α) + G(x + ct; α)

u(x, t; α) = F(x− ct; α) + G(x + ct; α)

where

a(x; α) = F(x− ct; α) + G(x + ct; α) (VII.1)

a(x, t; α) = F(x− ct; α) + G(x + ct; α) (VII.2)

and

b(x; α) = F′(x− ct; α) + G′(x + ct; α) (VII.3)

b(x, t; α) = F′(x− ct; α) + G′(x + ct; α) (VII.4)

By the conditions (II.1) the solution is given by

u(x, t) = F(x− ct) + G(x + ct)

where F and G are given by the above formula
(7.1)− (7.4).

VIII. Examples

In this section we will give some examples to
illustrate the previous results.

Example VIII.1

gH D
3
2
t u(t, x)−g c2 ∂2

∂x2 u(t, x) = 0

0 < x, t < 1, 0 < γ < 1

u(0, x; α) = [(1 + α)e−x2
, (3− α)e−x2

],
∂
∂t u(0, x) = 0

(VIII.1)

the solution is given by u(x, t) = F−1 (U(ω, t)) with

U(ω, t) =
[

α+1√
2

e−ω2
, −α+3√

2
e−ω2

]
+

c2

Γ( 1
2 )

∫ t

0

∫ s

0
(s− τ)−

1
4 U(ω, τ)dτds

Example VIII.2

gH D2
t u(t, x)−g c2 ∂2

∂x2 u(t, x) = 0

0 < x, t < 1, 0 < γ < 1

u(x, 0; α) = [αe−x2
, (2− α)e−x2

],
∂
∂t u(x, 0) = 0

(VIII.2)

Fig. 1. Lower and upper branch of u(x, t)with α = 1

the solution is given by

u(x, t) = [α, 1− α

2
]e−x cosh(ct)

IX. Conclusions

This study makes it possible to explain the wave
phenomena with uncertainty in experimental data.
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Abstract—In this paper, we establish the Ulam-Hyers stability
and Ulam-Hyers-Rassias stability for fuzzy integrodifferential
equations under Caputo gH-differentiability by using the fixed
point method.

Index Terms—Fuzzy Ulam-Hyers-Rassias stability, Caputo
fractional derivatives, fuzzy fractional integrodifferential equa-
tions, fixed point theory.

I. INTRODUCTION

In this paper, we will propose fuzzy Ulam-Hyers-Rassias
stability for the two kinds of fuzzy fractional integrodifferen-
tial equations of order α ∈ (0, 1) with generalized Hukuhara
derivative under form{

C
gHDαa+u(t) = f(t, u(t)) +

∫ t
a
g(t, s, u(s))ds, t ∈ [0, a],

u(0) = u0 ∈ Ed.
(1)

Where C
gHDαa+ is the Caputo’s generalized Hukuhara deriva-

tive, f : [0, a] × Ed −→ Ed, is continuous on [0, a] and
g : [0, a]× [0, a]× Ed −→ E is continuous on [0, a]× [0, a].
We wish to mention that the theory of fuzzy fractional integral
and differential equations have recently been the subject of
important studies (see e.g [1]–[11] ). In [12], Shen et al
studied the Ulam stability problems of the first order linear
fuzzy differential equations under some suitable conditions,
and in [13], Diaz et al has introduced a fixed point theorem of
the alternative for contractions on a generalized metric space,
with which Shen et al in [14] proved the Ulam stability of
fuzzy differential equations. Since the number of documents
dealing with the stability of Ulam for fuzzy fractional inte-
grodifferential equations (FFIEs) is rather limited compared
to the number of publications concerning FFIEs, we decide
to study by using the fixed point technique, the Ulam-Hyers-
Rassias stability for FFIEs.
Our results are inspired by the one in [15] where the fuzzy
Ulam-Hyers-Rassias stability of FFIEs is studied. The rest of
this paper is organized as follows: In section 2, we recall some
notations of the fuzzy number space, the fixed point theorem
and the basic notations of the Riemann-Liouville fractional
integral and Caputo fractional derivative for fuzzy functions.
The Ulam-Hyers-Rassias stability for fuzzy fractional inte-
grodifferential equations are discussed in Sections 3.

II. PRELIMINARIES

In this section, we introduce some definitions, theorems
and lemmas which are used in this paper. For more details,
we can see papers [3] [9] [12].

Definition 2.1: A function d : X×X −→ [0,+∞) is called
a generalized metric on X if and only if d satisfies:

(1) d(x, y) = 0 if and only if x = y,

(2) d(x, y) = d(y, x) for all x, y ∈ X,

(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.
Theorem 2.2: (Banach) Let d : X × X −→ [0,+∞)

be a generalized metric on X and (X, d) is a generalized
complete metric space. Assume that T : X −→ X is a
strictly contractive operator with the Lipschitz constant
L < 1. If there exists a nonnegative integer n such that
d(Tn+1x, Tnx) <∞ for some x ∈ X, then the following are
true:

(i) the sequence Tnx converges to a fixed point x∗ of T ,

(ii) x∗ is the unique fixed point of T in
X∗ = {y ∈ X | d(Tnx, y) <∞},

(iii) if y ∈ X∗, then we have d(y, x∗) ≤ 1
1−Ld(Ty, y).

Lemma 2.3: Let ϕ : J −→ [0,+∞) be a continuous
function. We define the set

X := {x : J −→ RF | x is continuous function on J},

where RF is the space of fuzzy sets, equipped with the metric
d(x, y) = inf{η ∈ [0,+∞) ∪ {+∞} | D(x(t), y(t)) ≤
ηϕ(t), ∀t ∈ J}.
Then, (X, d) is a complete generalized metric space.

Let Kc(Rd) denote the family of all nonempty, compact and
convex subsets of Rd. The addition and scalar multilplication
in Kc(Rd) are defined as usual i.e, for A,B ∈ Kc(Rd) and
λR,

A+B = {a+ b | a ∈ A, b ∈ B}, λA = {λa | a ∈ A}
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Let Ed denote the set of fuzzy subsets of the real axis, if
ω : Rd −→ [0, 1], satisfying the following properties:
(i) ω is normal, that is, there exists z0 ∈ Rd such that
ω(z0) = 1,

(ii) ω is fuzzy convex, that is, for 0 ≤ λ ≤ 1

ω(λz1+(1−λ)z2) ≥ min{ω(z1), ω(z2)}, for any z1, z2 ∈ Rd,

(iii) ω is upper semicontinous on Rd,

(iv) [ω]0 = cl{z ∈ Rd : ω(z) > 0} is compact, where cl
denotes the closure in (Rd, | . |).
Then Ed is called the space of fuzzy number. For
r ∈ (0, 1], we denote [ω]r = {z ∈ Rd | ω(z) ≥ r}
and [ω]0 = {z ∈ Rd | ω(z) > 0}. From the conditions
(i) to (iv), it follows that the r − level set of ω, [ω]r, is
a nonempty compact interval, for all r ∈ [0, 1] and any ω ∈ E.

The notation [ω]r = [ω(r), ω(r)], denotes explicitly the
r − level set of ω, for r ∈ [0, 1]. We refer to ω and ω
as the lower and upper branches of ω, respectively. For
ω ∈ Ed, we define the lengh of the r − level set of ω as
len([ω]r) = ω(r)−ω(r). For addition and scalar multiplication
in fuzzy set space Ed, we have [ω1 + ω2]r = [ω1]r + [ω2]r,
[λω]r = λ[ω]r.

The Hausdorff distance between fuzzy numbers is given by

D0[ω1, ω2] = sup
0≤r≤1

{| ω1(r)− ω2(r) |, | ω1(r)− ω2(r) |}.

The metric space (Ed, D0) is complet metric space and the
following properties of the metric D0 are valid.

D0[ω1 + ω3, ω2 + ω3] = D0[ω1, ω2],

D0[λω1, λω2] =| λ | D0[ω1, ω2],

D0[ω1, ω2] ≤ D0[ω1, ω3] +D0[ω3, ω2],

for all ω1, ω2, ω3 ∈ Ed and λ ∈ Rd. Let ω1, ω2 ∈ Ed, if there
exists ω3 ∈ Ed such that ω1 = ω2 + ω3 then ω3 is called the
H-difference of ω1, ω2. We denote the ω3 by ω1 	 ω2. Let us
remark that ω1 	 ω2 6= ω1 + (−1)ω2.

Definition 2.4: The generalized Hukuhara difference of two
fuzzy numbers ω1, ω2 ∈ Ed (gH-difference for short) is
defined as follows:

ω1 	gH ω2 = ω3 ⇔
{

(i) ω1 = ω2 + ω3,
or (ii) ω2 = ω1 + (−1)ω3.

Let [0, a] be a compact interval in R+. Denote by diam[u(t)]r

the diameter of fuzzy set u, for t ∈ [0, a]. A function
u : [0, a] −→ Ed is called ω-increasing (ω-decreasing) on
[0, a] if for every r ∈ [0, 1] the function t 7−→ diam[u(t)]r is
nondecreasing (nonincreasing) on [0, a]. If u is ω-increasing
or ω-decreasing on [0, a], then we say that u is ω-monotone
on [0, a].

Definition 2.5:

Let t ∈ (a, b) and h such that t + h ∈ (a, b), then the
generalized Hukuhara derivative of fuzzy-valued function x :
(a, b) −→ Ed at t is defined as

DgHx(t) = lim
h−→0

x(t+ h)	gH x(t)

h
.

If DgHx(t) ∈ Ed satisfying last inequality, we say that x
is generalized Hukuhara differentiable (gH-differentiable for
short) at t.

Definition 2.6: Let x : [a, b] −→ Ed, the fuzzy Rieman-
Liouville integral of fuzzy-valued function x is defined as
follows:

(J αa+x)(t) =
1

Γ(α)

∫ t

a

(t− s)α−1x(s)ds.

For a ≤ t, and 0 < α ≤ 1. For =α = 1, we set J 1
a = I , the

identity operator.
Definition 2.7: Let DgH ∈ C([a, b], Ed) ∩ L([a, b], Ed).

The fuzzy gH-fractional Caputo diffentiability of fuzzy-valued
function x ([gH]Ca − differentiable for short) is defined
as following:
C
gHDαa+x(t) = J 1−α

a+ (DgHx)(t) = 1
Γ(1−α)

∫ t
a
(t −

s)−α(DgHx)(s)ds,
where 0 < α ≤ 1, t > a.

Lemma 2.8: Suppose that x : [a, b] −→ Ed be a fuzzy
function and DgHx(t) ∈ C([a, b], Ed) ∩ L([a, b], Ed). Then

J αa+(CgHDαa+x)(t) = x(t)	gH x(a).

Lemma 2.9: Let u : [0, a] −→ Ed be a continuous function
on [0, a] and let α ∈ (0, 1), then the FFIE (1) is equivalent to
the following integral equation:

(1) If u is ω-increasing on [0, a], then

u(t) = ϕ(0) +
1

Γ(α)

∫ t

a

(t− s)α−1(f(s, u(s))

+

∫ s

a

g(s, r, u(r))dr)ds, (2)

(2) If u is ω-decreasing on [0, a], then

u(t) = ϕ(0)	 (−1)

Γ(α)

∫ t

a

(t− s)α−1(f(s, u(s))

+

∫ s

a

g(s, r, u(r))dr)ds. (3)

III. MAIN RESULTS

In the sequel, our aim score is to present the results for the
existence and the stability of the problem (1). The methods
to solve these problems are quite similar. However, since the
conditions for the existence of solutions of fuzzy fractional
integrodifferential equations (2) and (3) are dissimilar, we shall
present the two kinds (2) and (3) in two separate subsections.
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A. Fuzzy Ulam-Hyers-Rassias stability for FFIEs (2)

Firstly, we present the definitions of fuzzy Ulam-Hyers
stability and fuzzy Ulam-Hyers-Rassias stability.

Definition 3.1: We say that the problem (2) is fuzzy Ulam-
Hyers stable, if there exists a constant Kf > 0 such that for
each ε > 0 and for each solution v ∈ C1([0, a], Ed) of the
following inequality
D
[
C
gHDαa+v(t), f(t, v(t)) +

∫ t
a
g(t, s, v(s))ds

]
≤ ε,∀t ∈

[0, a],
then, there exists a solution u ∈ C1([0, a], Ed) of problem (2)
with

D [v(t), u(t)] ≤ Kfε,

for all t ∈ [0, a]. We call Kf a Ulam-Hyers stability constant
of (2).

Definition 3.2: We say that the problem (2) is fuzzy Ulam-
Hyers-Rassias stable, if there exists a constant Cf > 0 such
that for each ε > 0 and for each solution v ∈ C1([0, a], Ed)
of the following inequality
D
[
C
gHDαa+v(t), f(t, v(t)) +

∫ t
a
g(t, s, v(s))ds

]
≤ ϕ(t),∀t ∈

[0, a],
then, there exists a solution u ∈ C1([0, a], Ed) of problem (2)
with

D [v(t), u(t)] ≤ Cfϕ(t),

for all t ∈ [0, a] and for some nonnegative function ϕ defined
on [0, a].

Remark 3.3: We observe that definition 3.2 ⇒ definition
3.1.

In the following, we shall prove that the FFIEs (2) is fuzzy
Ulam-Hyers-Rassias stable on bounded interval by the fixed
point theorem.

Theorem 3.4: Assume that f : [0, a] × Ed −→ Ed and
g : [0, a] × [0, a] × Ed −→ Ed are continuous functions
satisfying the following conditions:

(i) There exists a constant Lfg > 0 such that:

max {D[f(t, u), f(t, v)];D[g(t, s, u), g(t, s, v)]} ≤ LfgD[u, v],
(4)

for all each (t, s, u), (t, s, v) ∈ [0, a]× [0, a]× Ed.

(ii) There exists a constant K,C > 0 such that 0 <
LfgK(1+C) < 1 and let ϕ : [0, a] −→ [0,∞) be a continuous
function and increasing on [0, a] with:∫ t

a

ϕ(s)ds ≤ C.ϕ(t), ∀t ∈ [0, a], (5)

and
1

Γ(α)

∫ t

a

(t− s)α−1ϕ(s)ds ≤ Kϕ(t), ∀t ∈ [0, a], (6)

If a continuously ω-increasing function u : [0, a] −→ Ed

satisfies the following inequality

D

[
C
gHDαa+u(t), f(t, u(t)) +

∫ t

a

g(t, s, u(s))ds

]
≤ ϕ(t),

(7)

for any t ∈ [0, a], then there exists a unique ũ : [0, a] −→ Ed

of (2.2) such that

ũ(t) = u0+
1

Γ(α)

∫ t

a

(t−s)α−1(f(s, ũ(s))+

∫ s

a

g(s, r, ũ(r))dr)ds,

(8)
and

d[ũ(t), u(t)] ≤ 1

1− LfgK(1 + C)
, ∀t ∈ [0, a]. (9)

Proof:

Let us consider the space of all continuous fuzzy function
u : [0, a] −→ Ed by

X = {u : [0, a] −→ Ed | u is continuous on [0, a]},

equipped by the metric

d(u, v) = inf{C ∈ [0,+∞) ∪ {+∞} | D[u(t), v(t)] ≤
Cϕ(t)}, ∀t ∈ [0, a].

By lemma 2.3, we observe that (X, d) is also a complete
generalized metric space. We define an operator Q : X −→ X
by

(Qu)(t) = u0 +
1

Γ(α)

∫ t

a

(t− s)α−1(f(s, u(s))

+

∫ s

a

g(s, r, u(r))dr)ds, ∀t ∈ [0, a]. (10)

Because f and g are a continuous fuzzy functions, the right
hand side of (10) is also continuous on [0, a]. This yields that
Qu is continuous on [0, a]. So, the operator Q is well-defined.
To apply theorem 2.2 in the proof of this theorem, we need
the operator Q to be strict contractive on X. For any u, v ∈ X
and let Cuv ∈ [0,+∞) ∪ {+∞} such that

d(u, v) ≤ Cuv, ∀t ∈ [0, a].

Then, by the definition of d, we have

D[u(t), v(t)] ≤ Cuvϕ(t), ∀t ∈ [0, a]. (11)

From the definition of the operator Q and assumption (4)-
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(6), we have the following estimation

D[(Qu)(t), (Qv)(t)] = D[u0 +
1

Γ(α)

∫ t

a

(t− s)α−1(f(s, u(s))

+

∫ s

a

g(s, r, u(r))dr)ds, u0 +
1

Γ(α)

∫ t

a

(t− s)α−1(f(s, v(s))

+

∫ s

a

g(s, r, v(r))dr)ds],

≤ 1

Γ(α)

∫ t

a

(t− s)α−1D[f(s, u(s)), f(s, v(s))]ds

+
1

Γ(α)

∫ t

a

(t− s)α−1(

∫ s

a

D[g(s, r, u(r)), g(s, r, v(r))]dr)ds,

≤ Lfg
Γ(α)

∫ t

a

(t− s)α−1D[u(s), v(s)]ds

+
Lfg
Γ(α)

∫ t

a

(t− s)α−1(

∫ s

a

D[u(r), v(r)]dr)ds,

≤ LfgCuv
Γ(α)

∫ t

a

(t− s)α−1ϕ(s)ds

+
LfgCuv

Γ(α)

∫ t

a

(t− s)α−1(

∫ s

a

ϕ(r)dr)ds,

≤ LfgCuvKϕ(t) + LfgCuvCKϕ(t)

= LfgK(1 + C)Cuvϕ(t).

Hence

D[(Qu)(t), (Qv)(t)] ≤ LfgK(1 + C)Cuvϕ(t). (12)

So, by the definition of metric d, we get

d(Qu,Qv) ≤ LfgK(1 + C)d(u, v), for all u, v ∈ Ed.

Where 0 < LfgK(1 + C) < 1, hence the operator Q is
strictly contractive mapping on X.
For an arbitrary ω ∈ X and from the definition of X and Q,
it follows that there exists a constant 0 < Cω <∞ such that:

D[(Qω)(t), ω(t)] = D[u0 + 1
Γ(α)

∫ t
a
(t− s)α−1(f(s, ω(s))

+
∫ s
a
g(s, r, ω(r))dr)ds, ω(t)] ≤ Cωϕ(t),

for any t ∈ [0, a], since f, g and ω are bounded on [0, a], and
the minimum of ϕ(t) > 0 on t ∈ [0, a]. Then, we infer that
d(Qω,ω) ≤ Cω <∞. Therefore, according to (i) and (ii) of
theorem 2.2, there exists a continuously function ũ : [0, a] −→
Ed such that Qnω −→ ũ in the space (X, d) as n −→∞ and
Qũ = ũ, that ũ satisfies the problem (8) for any t ∈ [0, a].
Now, we shall confirm that {u ∈ X | d(ω, u) <∞} = X∗. For
an arbitrary u ∈ Ed, since u and ω are bounded on [0, a] and
mint∈[0,a] ϕ(t) > 0, there exists a constant 0 < Cu <∞ such
that D[ω(t), u(t)] ≤ Cuϕ(t) for any t ∈ [0, a]. Therefore, we
have d(ω, u) <∞ for any u ∈ Ed, that is {u ∈ X | d(ω, u) <
∞} = X∗. By theorem 2.2-(ii), we conclude that ũ is the
unique fixed point of Q on X.
On the other hand, from the inequality (7) it follows that

d(u,Qu) ≤ 1. (13)

Finally, by theorem 2.2− (iii) and from the estimation (13),
it implies that

d(ũ(t), u(t)) ≤ d(u,Qu)

1− LfgK(1 + C)
≤ 1

1− LfgK(1 + C)
,

which means the estimation (9) holds true for any t ∈ [0, a].
This completes the proof. �

B. Fuzzy Ulam-Hyers-Rassias stability for FFIEs (3)

Theorem 3.5: Suppose that the functions f, g and ϕ satisfy
all conditions as in theorem 3.4. Assume that for each t ∈
[0, a] and for each continuous fuzzy function z : [0, a] −→ Ed,
if the Hukuhara difference
z(0)	 (−1)

Γ(α)

∫ t
a
(t− s)α−1

(
f(s, z(s)) +

∫ s
a
g(s, r, z(r))dr

)
ds,

exists and a continuously ω-nonincreasing function v :
[0, a] −→ Ed satisfies

D[v(t), v0 	
(−1)

Γ(α)

∫ t

a

(t− s)α−1(f(s, v(s))

+

∫ s

a

g(s, r, v(r))dr)ds] ≤ ϕ(t), (14)

for any t ∈ [0, a], where v0 = u0, then there exists a unique
solution û : [0, a] −→ Ed of the problem (3) which satisfies

û(t) = u0 	
(−1)

Γ(α)

∫ t

a

(t− s)α−1(f(s, û(s))

+

∫ s

a

g(s, r, û(r))dr)ds, (15)

and

d[û(t), v(t)] ≤ 1

1− LfgK(1 + C)
, (16)

for any t ∈ [0, a].

Proof:
We consider the complete generalized space (X, d) defined as
in the proof of theorem 2. Define the operator P : X −→ X
as follows:

(Pu)(t) = u0 	
(−1)

Γ(α)

∫ t

a

(t− s)α−1(f(s, u(s))

+

∫ s

a

g(s, r, u(r))dr)ds, t ∈ [0, a]. (17)

Since the function f and g is continuous on [0, a]

and the Hukuhara difference u0 	 (−1)
Γ(α)

∫ t
a
(t −

s)α−1
(
f(s, u(s)) +

∫ s
a
g(s, r, u(r))dr

)
ds exists, similary to

theorem 1, it follows that Pu is well-defined on [0, a] or Pu
is continuous on [0, a]. Now, we observe that the operator
P is strictly contractive on X. Indeed, for any u, v ∈ X and
let Cuv ∈ [0,+∞) ∪ {+∞} be an arbitrary constant with
d(u, v) ≤ Cuv for t ∈ [0, a], that is, let us assume that

D[u(t), v(t)] ≤ Cuvϕ(t), (18)

IJOA ©2021 54



International Journal on Optimization and Applications
IJOA. Vol. 1, Issue No. 2, Year 2021, www.usms.ac.ma/ijoa
Copyright ©2021 by International Journal on Optimization and Applications

for t ∈ [0, a]. Furthermore, from (17), (18) and by the Lips-
chitz condition of f and g, we have the following estimation:

D[(Pu)(t), (Pv)(t)] = D[u0 	
(−1)

Γ(α)

∫ t

a

(t− s)α−1(f(s, u(s))

+

∫ s

a

g(s, r, u(r))dr)ds, u0 	
(−1)

Γ(α)

∫ t

a

(t− s)α−1(f(s, v(s))

+

∫ s

a

g(s, r, v(r))dr)ds],

≤ 1

Γ(α)

∫ t

a

(t− s)α−1D[f(s, u(s)), f(s, v(s))]ds

+
1

Γ(α)

∫ t

a

(t− s)α−1(

∫ s

a

D[g(s, r, u(r)), g(s, r, v(r))]dr)ds,

≤ Lfg
Γ(α)

∫ t

a

(t− s)α−1D[u(s), v(s)]ds

+
Lfg
Γ(α)

∫ t

a

(t− s)α−1(

∫ s

a

D[u(r), v(r)]dr)ds,

≤ LfgCuvKϕ(t) + LfgCuvCKϕ(t)

= LfgK(1 + C)Cuvϕ(t).

Hence

D[(Pu)(t), (Pv)(t)] ≤ LfgK(1 + C)Cuvϕ(t). (19)

This means that d(Pu, Pv) ≤ LfgK(1 + C)d(u, v). Hence,
the operator P is a strictly contractive mapping on X by the
assumption 0 < LfgK(1 + C) < 1. Simalar to the theorem
3.4, we can show that for each ω ∈ X satisfies d(Pω, ω) <∞.
Hence, by theorem 1, it implies that there exists a continuously
function û : [0, a] −→ Ed such that Pnω −→ û in (X, d) as
n −→∞, and such that Pû = û, that is û satisfies (4.15) for
t ∈ [0, a]. Similar to the proof of theorem 3.4, we observe that
there exists a constant Cω > 0 such that D[ω(t), u(t)] ≤ Cω ,
for any t ∈ [0, a]. This means that d(ω, u) < ∞ for each
u ∈ Ed, or equivalently, {u ∈ X | d(ω, u) < ∞} = X∗.
Furthermore, by theorem 2.2, we imply that û is a unique
continuous function which satisfies (15).
Moreover, by theorem 2.2, we also obtain

d(û(t), u(t)) ≤ d(u, Pu)

1− LfgK(1 + C)
≤ 1

1− LfgK(1 + C)
,

which means the estimation (16) holds true for any t ∈ [0, a].
This completes the proof. �

IV. CONCLUSION

In this study, we are studied the Ulam-Hyers-Rassias sta-
bility for fuzzy intergodifferential equation via the fixed point
technique. This result can be used to study fractional fuzzy
differential equations with other types of derivative concepts in
fuzzy setting, for example, Riemann-Liouville and Hadamard
generalized Hukuhara differentiability.
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Abstract— Taxation is one of the instruments for changing 

the behavior of agents, either by encouraging or discouraging 

certain behavior’s considered good or bad, for instance certain 

investments with negative or positive impacts that arouse 

government’s concerns. 

Eco-taxation seeks to change the behavior of agents 

by using the instrument of taxation to discourage, especially, 

negligent behavior leading to more pollution and climate 

change. Eco-taxation also aims to implement the polluter-pays 

principle, that is, to make the polluter bear the cost of his 

environmental damage, as well as allowing the State to 

generate tax revenues that can be directed towards financing 

appropriate policies for a transition towards a more 

environmentally friendly economy. Eco-taxation can thus be 

used to limit the production and consumption of goods and 

services that are harmful to the environment. 

This research will compare all the tax levies existing 

in Europe and in Africa (the case of Morocco), as these 

instruments are designed to meet the challenges of climate 

change, and to show how coherent eco-taxation contribute 

effectively to changing the behavior of all economic actors. 

Keywords— Eco-taxation, environmental taxation, ecological 

taxation, climate change. 

I. INTRODUCTION 

Earth's climate is regulated by the ability of the 
atmosphere to partially retain the energy reflected from the 
earth. This physical phenomenon is called the greenhouse 
effect, because it is similar to that encountered in a glass 
greenhouse. It is a natural phenomenon essential to the 
development of life on earth; in its absence, there would be 
no liquid water, because the average temperature on earth 
would reach degrees much lower than the current 
temperature. 

      These problems of economic changes, posed by the 
environment were partly behind the creation of certain taxes 
and levies, because companies when they buy, sell or fix the 
price of products, do not directly integrate the cost of the 
damages that 'they cause the environment, and the future 
scarcity of energies and raw materials. 

Eco-taxation aims to integrate the environmental cost it 
causes into the cost price; it is thus a means of changing the 
behavior of economic agents in a way that is favorable to the 
environment. 

The use of Eco-taxation is also justified by the “polluter 
pays” principle, that is to say, the polluter participates in the 

financing of measures to prevent, reduce and fight against 
pollution, via their tax contribution. 

In this contribution, we will analyze all the levies aimed 
at combating existing climate change in Morocco and in 
certain European countries, our problematic will be as 
follows: to what extent does eco-taxation effectively 
contribute to change the behavior of economic players? 

We will try to answer this problem through three axes: 

Axis I: Theoretical overview on Eco-taxation; 

Axis II: Eco-Taxation in Europe; 

Axis III: Eco-Taxation in Morocco. 

Axis I: Theoretical overview on Eco-taxation. 

Eco-taxation aims to solve the following problems: 

 Fight against global warming;

 Reduction of pollution;

 Rational use of resources;

 Preservation of natural environments of 

biodiversity.

Indeed, Eco-taxation, is a mode of production, a product, or a 

service damaging the environment (“evils”), makes it 

possible to limit the attacks only in the interest of allowing 

the public authorities to finance the damages of the public 

expenses. 

The main difference between taxation and Eco-

taxation stems is its objective, where taxation is defined as 

the means for the State to collect the resources which will 

enable it to finance these expenses, or more generally public 

goods (education , defense, health, etc.) or to ensure a certain 

redistribution of income; while Eco-taxation aims to modify 

the behavior of economic agents in order to prevent them 

from making decisions that they might regret in the future, or 

thus to limit consumption to protection of the Environment . 

Several terms refer to the concept of Eco-taxation, 

such as: Green Taxation, Environmental Taxation, 

Ecological Taxation, Energy Taxation, and Eco Tax... 

The notion of Eco-taxation is a challenge, which 

has given rise to numerous debates on the most relevant 

perimeter to be retained, which bring us to the definition of 

the OECD [1], “all taxes and fees whose base is constituted 

by a pollutant or, more generally, by a product or a service 

which deteriorates the environment or which results in a levy 

on natural resources ”. 
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According to this definition, Eco-taxation goes 

beyond the sole taxation explicitly designed to fight against 

pollution, but incorporates another main purpose is the 

financing of public services; also it has the effect of helping 

to limit pollution. 

The tax council in France in 2005[2]; announces 

that “The situation can be considered as paradoxical: the 

most important environmental effects are due to taxes and 

fees for services rendered, created long before the emergence 

of public policies in favor of the environment; fiscal 

measures directly inspired by environmental concerns have 

only a limited effect, whether it concerns the various 

components of the tax on polluting activities (TGAP [3]) or 

derogatory tax measures ” 

This announcement is considered as a broad 

approach, eco-taxation is an important instrument to face the 

challenges of climate change, by using only energy taxation, 

the objective is to change the behavior of all agents for a 

transition to an economy low in carbon and more 

environmentally friendly. 

      This approach was confirmed by Thierry Wahl, 

Inspector General of Finance and responsible for a report on 

the subject, "the most successful expression of the polluter 

pays principle". It is intended to encourage virtuous behavior 

in environmental matters and to deter bad behavior. It can 

take several forms: tax, royalties, tax credit, exemption or 

even direct aid. [4] 

Environmental taxation also allows the 

internalization of external costs, that is to say to pass on in 

the price of goods and services, certain environmental costs 

which are currently unduly supported by future generations, 

the objective is to push the agents to make financially and 

environmentally sound decisions. 

The externality or external effects appearing when 

the decisions of an economic agent affect the well-being of 

other agents, involuntarily, despite the absence of any market 

transaction between them. 

The external effects can be positive (beneficial 

influence) or negative (deterioration of the situation). 

Pollution constitutes a negative externality therefore, to get 

polluters to take into account the external cost of their 

activity, the regulatory world proposed by Arthur C. Pigou 

[5] consists of the implementation of a tax called " 

Pigovienne Tax ”, whose unit tax must be equal to the 

marginal damage caused by polluting emissions at their 

optimal level (that is to say the level which maximizes social 

welfare, the marginal damage suffered by the victims is 

equal to marginal cost of cleaning up the polluting sector) it 

provides the price signal which ensures the internalization of 

externalities. 

 At this level, all polluters want to minimize their 

costs either by motivating innovation to seek less polluting 

solutions to reduce their production costs or by offering less 

polluting products by taking advantage of the opportunities 

provided by environmental regulations. 

In general, the increase in the price of the polluting good or 

service due to the environmental tax results in an increase in 

its price compared to other goods and services. 

This increase in prices encourages consumers and buyers to 

change their decisions vis-à-vis this type of polluting goods 

and service, by choosing other non-polluting ones, this 

decision change is desired precisely because it comes from 

correct the behavior of agents against the environment 

resulting from climate change. 

 As a conclusion, environmental taxation aims to integrate 

additional costs in the form of environmental taxes (called 

“externalities”) into the cost borne by each of the economic 

parties. in addition to the regulatory approach, and stimulates 

innovation in the medium term respects the polluter pays 

principle, defined by the Organization for Economic 

Cooperation and Development (OECD) in 1972, which 

assumes that the costs resulting from pollution prevention, 

reduction and control measures must be borne by the 

polluter. 
Axis II: Eco-Taxation in Europe_ case of France_ 

Eco-taxation is the set of taxes, fees and charges that are 

imposed on polluting taxpayers, more generally, through a 

product or service that damages the environment. It was 

introduced to limit the effect on the climate of the 

consumption of polluting goods and services, and thus fight 

against global warming by promoting energy savings and 

less polluting energies. The “polluter pays” principle remains 

the basis of Eco-taxation. This principle consists of 

pollutants contributing to limiting pollution and damage to 

the environment.  

Environmental taxation occupies an important place in the 

tax policies of member countries of the European Union. 

This part provides an overview of environmental taxation in 

Europe in general, based on numerous taxes that are part of 

the list of taxes included in ecological taxation. Recourse to 

European experiences, in particular the case of France, 

constructs an evaluation of the efficiency and consistency of 

ecological taxation. 

 In recent years, environmental taxation has evolved to 

support the ecological transition. The government in France 

has put in place an arsenal of regulations with stakeholders to 

support these developments. We will present the main taxes 

made up of Eco taxation in France, and an analysis of the 

performance of the French experience in ecological taxation. 

II-1 The main taxes constituted Eco-taxation in France: 

Environmental taxation in France can be divided into four 

categories depending on the function of the tax [6]. 

1- The taxes themselves, which are compulsory levies 

without compensation and the basis of which is a polluting 

product. This is the case, for example, with the tax on 

polluting activities (TGAP), based on emissions to the air or 

pesticides, and the TIPP. 

2-   Charges that cover costs for environmental services, 

mainly in the areas of water and waste. 

3-  So-called positive measures such as tax credits which 

seek in particular to orient investment choices in a more 

favorable direction for the environment. 

4-Tax incentives (exemptions, deductions, rate cuts) which 

also seek to orient behavior in favor of the environment. 

Eco-taxation in France can be divided into four categories 

depending on the type of tax; 4 following categories: 
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• Energy taxes; 

• Taxes on transport; 

• Pollution taxes; 

• Resource taxes. 

In this part we will present a list of all the environmental 

taxes in force in France, based on the Eurostat nomenclature. 

For each tax, its base is specified in 2016. 

 
TABLE  1. The Main Environmental Taxes in France. 

Tax Base 

Energy   

Internal tax on the 

consumption of energy 

products - TICPE 

Petroleum products used as 

fuels or fuels 

Carbon component 

(integrated into ICT rates) 

Fossil energies whose 

combustion emits CO2 

Contribution to the public 

electricity service (CSPE) 

Prorate of the quantity of 

electricity consumed 

Local taxes on electricity 

(Internal tax on final 

electricity consumption 

TICFE + Tax on final 

electricity consumption 

TCFE)volt-amperes 

Quantity of electricity 

subscribed (TICFE if greater 

than or equal to 250 kilo, 

otherwise TCFE) 

Flat-rate tax on network 

companies (IFER) 

9 components: Wind turbines 

and tidal turbines, nuclear or 

thermal installation, 

photovoltaic or hydroelectric 

installation, electrical 

transformers, radio stations, 

gas installations, SNCF 

railway equipment, RATP 

railway equipment,  and 

certain telephone switching 

equipment 

Internal tax on the 

consumption of natural gas 

–maintenance. TICGN 

Natural gas used as fuel 

Fuel tax in the overseas 

departments 

Petroleum products used as 

fuel 

Tax for the professional 

committee of strategic 

petroleum stocks 

Costs of constitution and 

conservation during an Andes 

strategic stocks 

Contribution of low-

voltage electrical energy 

distributors low-voltage 

electrical energy 

distributors 

Receipts from 

Annual flat-rate tax on 

pylons 

Pylons supporting power lines 

whose voltage is at least equal 

to 200 kilovolts 

General tax on polluting 

activities ( TGAP) fuels 

Release for consumption of 

fuels 

TIC on coal, lignite and 

coke 

Quantity of energy delivered 

expressed in kWh 

Transport   

Tax on registration 

certificates (gray cards) 
Tax power of the vehicle 

Additional tax on motor 

vehicle insurance the 

proportional contribution to 

insurance premiums on motor 

vehicles 

Tax on company cars 

Number of vehicles detained 

individuals or leased by, or 

held by employees of the 

company and the miles driven 

which are subject to 

reimbursement fees 

Tax due by motorway 

concessionaires 

Number of kilometers 

traveled by users 

Civil aviation tax 

Number of passengers and 

mass of freight and mail 

loaded in France 

Tax on the purchase of the 

most polluting new private 

vehicles (penalty of 

purchase) 

Payable on the most polluting 

passenger cars, when they are 

first registered in France 

Solidarity contribution on 

plane tickets 

The number of passengers on 

board, excluding passengers 

in transit 

Axle tax 

Truck with an authorized 

weight equal to or greater 

than 12 tones, registered in 

France or in a third country 

(outside the EU) that has not 

concluded a reciprocal 

exemption agreement with 

France 

Hydraulic Tax 
Hydraulic works and 

hydroelectric works 

Territorial solidarity 

contribution 

Turnover relating to 

operations carried out for 

passenger rail transport 

services and commercial 

services directly related to 

them 

Tax on ski lifts 

Gross revenue from the sale 

of transport tickets ski lifts in 

mountain areas 

Tax on pleasure boats 

(annual francization and 

navigation rights) 

Ownership of a displaced 

vessel 

Tax due by public air and 

sea transport companies 

The number of passengers 

boarding in the Corsica and 

Guadeloupe regions , 

Guyana, Martinique and 

Reunion 

Fee owed by the railway 

undertakings for the 

regulatory authority for 

railway activities 

Part of the infrastructure use 

charge paid to SNCF signal 

within the limit of 5 

thousandths + € 0.10 / km 

traveled on other lines of the 

rail network 

Tax on maritime transport Number of passengers on 
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at tination of protected 

natural areas 

board destined for protected 

natural areas (list fixed by 

decree) 

Annual tax on the 

possession of polluting 

private vehicles (annual 

penalty) 

Vehicles emitting more than 

245gCO2 / km (240gCO2 / 

km for vehicles registered 

since 2012) 

Purchase tax on the most 

polluting second-hand 

Vehicles Used vehicles 

emitting more than 200gCO2 

/ km or having a fiscal power 

greater than 10 horsepower 

Tax intended to finance the 

development of vocational 

training actions in road 

transport 

Additional tax on the issuance 

of vehicle registration 

documents for goods 

transport and public 

passenger transport 

Pollution / resources 

Water pollution 

charges The domestic 

pollution charge is based on 

the quantity of drinking water 

consumed: € 0.3 / m3 

The fee for the modernization 

of wastewater collection 

networks is based on the 

quantities of water used and 

sent to the collection 

networks: 0.5 € / m3 

The diffuse pollution charge 

concerns phytosanitary 

products 

(phytopharmaceuticals) and 

takes into account the 

toxicity, the dangerousness 

for the environment of the 

substances they contain: 

between 2 and 5 , 1 € / kg 

The charge for water 

pollution of non-domestic 

origin is based on the annual 

pollution discharged into the 

natural environment and 

relates to 10 constituent 

elements of pollution 

The charge for water 

pollution by livestock is 

based on the Large Cattle 

Unit (UGB) and takes into 

account the stocking rate 

(number of animals per 

hectare), by promoting 

extensive breeding: 3 € / 

UGB 

General tax on polluting 

activities (TGAP) 

(excluding fuel TGAP) 

TGAP waste: installations for 

the elimination of household 

and similar waste 

(incineration or storage) and 

special industrial waste: 

variation in rates depending 

on the environmental 

performance of the facilities 

(between € 4 / ton and € 150 / 

ton) TGAP emission 

pollutants in the atmosphere 

of certain substances: 

between € 5 / t (benzene) and 

€ 1,000 / t (mercury) TGAP 

installations classified for 

environmental protection: 

between € 501.61 and € 

2,525.35 per year and per 

TGAP installation lubricants 

oils and lubricating 

preparations: 44.02 € / t 

TGAP detergents: between 

39.51 and 283.65 € / t TGAP 

extraction materials: 0.20 € / t 

Water withdrawal 
fees Annual volume of water 

withdrawal , expressed in m2 

Municipal and 

departmental mining 

Quantities of products 

extracted from mines, mines 

or quarries 

Fees on other water uses 

The fee for the protection of 

aquatic environments is based 

on fishing cards: € 10 per 

adult who engages in fishing, 

for one year 

The fee for water storage 

during low flow: the base is 

the volume of water stored 

during low flow; the ceiling 

rate of 0.01 € / m3 stored. The 

fee for obstacles on 

watercourses is due on 

structures constituting an 

obstacle on watercourses, 

blocking sediment transit and 

fish migration; the rate is set 

by the water agency for a 

maximum of 150 € / m of 

height difference. 

Royalty due by the 

operators of liquid 

hydrocarbon mines 

Value of the production of 

liquid or gaseous 

hydrocarbons at the start of 

the field (does not apply to 

deposits at sea) 

Tax on sea 
products Fishery products 

landed in France 
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Is environmental taxation a tool for protecting the 

environment? Gilles Rotillon In Different perspectives on the 

economy 2007/1 (n ° 1), page 109. 

Source : CGDD, d’après les annexes au PLF 2017, Tome 1 

de l’Évaluation des voies et moyens et rapport Agences de 

l’eau, et d’après le fichier Évaluation de recettes de la 

DGDDI. 

II-2 the performance of the French experience in 

ecological taxation: 
We can analyze the performance of Eco taxation in France 

by several forms and methods, in our work we choose to 

analyze it through their contribution to revenue budget, we 

will take as a reference the year 2016 data available for 

analysis.  

TABLE 2. Total from environmental taxes, by tax category. 

In millions 
euros 

in% of 
Total 

environ
mental 
taxes 

As a% of 
Gross 

Domestic 
Product 

as a% of 
the total 

taxes and 
social 

contributi
ons 

Total des Taxes 
environnementales 359 294 100,00 2,4 6,3 

Taxes sur l'énergie 275 392 76,6 1,9 4,8 
Taxes sur les 
transports 71 269 19,8 0,5 1,3 

Taxes sur la 
pollution / les 
ressources 

12 633 3,5 0,1 0,2 

EU-28, in 2015 

Source: Eurostat (envactax) Ecotaxes 

The environmental taxes in the European Union In 2015, the 

total public revenues arising from environmental taxes in the 

EU- 28 was 359.3 billion euros, or 2.4% of gross domestic 

product (GDP) and 6.3% of total government revenue from 

compulsory levies. 

Fig. 1. Total product of environmental taxes, 2015 (in%)

.  
Source: Eurostat (envactax) 

The product of environmental taxes for 2015 compared to 

GDP and to the total product of all taxes and social 

contributions by country. Relative to GDP, in 2015 the 

revenue from environmental taxes in the European Union 

reached the highest value in Croatia (4.1%), followed by 

Denmark with a ratio of 4.0%, Slovenia (3 , 9%) and Greece 

(3.7%). The lowest ratios between the product of 

environmental taxes and GDP (below 2%) were recorded in 

six Member States (Slovakia, Lithuania, Luxembourg, Spain, 

Ireland and Germany) 

At the end of 2016 the highest tax revenue / GDP ratio in 

Europe was that of France, Belgium and Denmark The tax 

revenue / GDP ratio in France (48.4%), Belgium (47.3%) 

and Denmark (46.5%).[7] At the level of the OECD, the 

ranking of France is slightly better (among the 20th out of 31 

member countries for which data is available). In France the 

internal tax on the consumption of energy products 

constitutes the fifth tax revenue, behind the value added tax 

(VAT), income tax, corporation tax and property tax. 

TABLE  3 : The main environmental taxes in 2016 

Name of the tax 

Revenue 2016 

(in millions of 

euros) 

Eurostat 

classification 

Internal tax on the 

consumption of energy 

products (TICPE) 

28 456 Energy 

Contribution to public 

service electricity (CSPE) 
8264 

Local taxes on electricity 1588 

Flat-rate tax on network 

companies (IFER) 
1592 

Domestic consumption tax 

on natural gas (TICGN) 
1104 

Other energy taxes 1 310 

Tax on registration 

certificates (gray cards) 
2 187 Transport 

Additional tax on 

automobile insurance 
996 

Tax due by motorway 

concessionaires 
599 

Tax on company vehicles 542 

Civil aviation 410 

Other taxes on transport 

charges 
1167 

Water pollution 1960 Pollution 

General tax on polluting 

activities (TGAP) (waste, 

atmospheric pollution, 

etc.) excluding fuel TGAP 

654 

Water levy fees 385 Resource 

Other resource taxes 22 

Total (Eurostat field) 51 235 

Source: Volume I of ways and means of the 2018 finance bill, data 

from the General Directorate of Customs and indirect duties. 

Source: Eurostat (envactax), press release in November 2018 
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According to these data, we see that environmental taxes (in 

the sense of Eurostat) represent 51 billion euros in 2016, we 

see that ecological taxation constitutes a transfer tax, where 

the revenue collected under an environmental tax will be 

allocated to the financing of an environmental public policy. 

We take, for example, the case of fees collected by water 

agencies, which are allocated to policies for managing water 

resources and improving their ecological and sanitary 

condition. So we will conclude that several environmental 

taxes have proven their effectiveness through their 

contribution to the financing of several public policies and to 

return a capital which makes it possible to revive activity and 

to make the economic system more efficient overall. 

Axis III: Eco-Taxation in Morocco 

Morocco has drawn up a negative balance sheet in terms of 

the environment, which calls for the economic priorities of 

the Moroccan State, to face this problem through economic 

and political instruments, and have taken several forms, 

notably legal, financial or fiscal, and depending on the nature 

of the environmental dimension (water, air, soil, waste, etc.). 

Among these main forms that promote environmental 

protection, environmental taxation. This part will be an essay 

of an analysis of environmental taxation in the Moroccan tax 

system. It wonders about the state of play of environmental 

taxation in Morocco? And to know is the Moroccan 

environmental taxation a viable solution to fight against 

climate change? 

The concept of environmental taxation: 

The concept of environmental taxation was first mentioned 

in Morocco in 2014 in a publication in the official bulletin N 

° 6240 of 20-06-2014 of du Dahir n ° 1-14-09 of 4 joumada l 

in 1435 (March 6, 2014) promulgating the framework law n 

° 99-12 on the national charter of the environment and 

sustainable development, that the concept of environmental 

taxation, and this aforementioned by article 30 "Is instituted 

an environmental taxation system composed of ecological 

taxes and fees imposed on activities characterized by a high 

level of pollution and consumption of natural resources. 

These taxes and fees can be applied to any characterized 

behavior, individual or collective, harming the environment 

and infringing the principles and rules of sustainable 

development”. 

The state of play of environmental taxation in Morocco: 

The industrial evolution of Morocco generated by the 

massive exploitation of the means of production having 

negative side effects, and contributes to the acceleration of 

the degradation of the environment. Statistics show this 

negative balance of the cost of environmental degradation in 

Morocco, in particular in 2000, the World Bank conducted a 

study entitled “Assessment of the cost of environmental 

degradation in Morocco” (CDE). This study evaluated, for 

the first time, the cost of environmental degradation which 

was estimated, for the year 2000, at 3.7% of GDP.[8]in 2014 

The cost of environmental degradation for Moroccan society 

was estimated at nearly 32.5 billion dirhams, or 3.52% of 

GDP. 

TABLE 4 : The damage caused by the cost of environmental 

degradation in Morocco. 

Lower 
bound 

Upper 
Terminal 
Billions 
of dh 

Average 
value 

Average 
value % 
Gross 

Domestic 
Product 

Water 11.10 12.20 11.70 1.26% 
Air 6.30 13.10 9.70 1.05% 
Soils 4.60 5.30 5.00 0.54% 
Waste (including 
hazardous waste) 3.70 3.70 3.70 0.40% 

Littoral 2.50 2.50 2.50 0.27% 
Drills 0.00 0.00 0.00 0.00% 
costs for Moroccan 
society 28.30 36.80 32.50 3.52% 

Carbon emissions 4.60 25.40 15.00 1.62% 
Cost for the global 
environment 4.60 25.40 15.00 1.62% 

Source: World Bank 

World Bank Report, The Cost of Environmental Degradation in 

Morocco Lelia Croitoru and Maria Sarraf (editors), January 2017. 

Among the national costs, water pollution (1.26% of GDP) is the 

main vector of water degradation, followed by air pollution (1.05% 

of GDP. Land degradation also entails considerable costs (0.54% 

of GDP), in particular due to erosion of cultivated land, land 

clearing and the desertification of rangelands. Waste represents a 

relatively high cost (0.4% of GDP).This critical situation shown by 

these studies to assess the cost of environmental degradation, in 

particular the studies based on carried out by the World Bank in 

2006 and 2017, urges the Moroccan State to establish an effective 

environmental policy. 

Moroccan regulations on green taxation: 

The Moroccan tax system is made up of an arsenal of taxes 

and duties having an impact on the environment. n the effects 

of the environment and exemptions and tax incentives 

encouraging the protection of the environment, we will 

include the main laws and codes: 

• The General Tax Code (CGI) provides for measures 

to be exempt from the Annual Motor Vehicle Tax (TSAVA); 

vehicles intended for the public transport of person’s whose 

total laden weight or the maximum total towed laden weight 

is less than or equal to 3,000 kilograms and electric motor 

vehicles and hybrid motor vehicles (electric and thermal); the 

subjection of sales of solar water heaters to value added tax 

(VAT) at the reduced rate of 10%. 

• The Code of Customs and Indirect Taxes (CDII) 

requires the royalty on the exploitation of phosphates which 

was abolished from January 1, 2008 (article 7 of the finance 

law for the year 2008); internal taxes on energy products; the 

ecological tax on plastics; the special cement tax; the Special 

Tax on Concrete Iron; the Special Tax on Sand. 
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• Law 47-06 relating to the taxation of local 

authorities constituted by the tax on the extraction of quarry 

products; the parking fee; driver's license tax; tax on taxi and 

coach licenses; the tax for checking vehicles over 5 years 

old; the tax on motorcycles with a cylinder capacity equal to 

or greater than 125 cm3. Established the rental value as the 

basis for calculating the business tax is capped at 50 million 

Dhs (this ceiling was 100 million Dhs from July 1, 1998 to 

2001). 

These measures are intended to limit large polluting 

industrial companies. To confirm the objective of national 

strategies against pollution and the effects of climate change. 

“Green, national and territorial taxation to help make 

Morocco a regional green factory ”Morocco has adopted an 

ambitious policy of environmental protection and clean 

energy production. This policy is certainly a source of 

opportunities, both for developing the country's 

attractiveness and for generating new activities. Anticipation 

of this problem when planning activity zones, by providing 

them with the most advanced environmental characteristics, 

would make it possible to benefit from a rationalization of 

costs through the scale effect and at the same time from 

reduce investment procedures and improve Morocco's 

attractiveness for the launch of new economic projects, as 

part of an integrated vision of 'Morocco Regional Green 

Factory', Taxation, with its two dimensions, national and 

local , should play a direct role, in support of this ambition, 

which is likely to create activities with high added value and 

quality jobs ” [9],. 

The Main Environmental Taxes in Morocco: 

The Moroccan tax system made up of a number of taxes that 

are favorable to the environment, we will mainly present: 

• Taxes and taxes in favor of the environment 

• The tax for checking vehicles over 5 years old; 

• The tax on motorcycles with certain engine 

capacity; 

• Internal taxes on energy products; 

• Taxes on the extraction of quarry products; 

• The wastewater treatment charge; 

• The tipping fee; 

• The special cement tax; 

• The ecological tax on plastics; 

• The Special Tax on Concrete Iron; 

• The tax on the deterioration of pavements; 

• The Special Tax on Sand, ... 

Main tax exemptions and reductions favorable to the 

environment: 

• Reduction of VAT on the rental of water and 

electricity meters; 

• The reduction of VAT on the economy car; and 

solar water heaters 

• The suspension of import VAT on butane gas; 

Etc. 

It has been observed that the measures of environmental 

taxation either in the institutional or legal plan, are new 

adopted or require an effort to further explain these 

measures, but it should be noted that Morocco has taken a 

big step to establish taxation with the objective of combating 

environmental degradation and promoting sustainable 

development. 

General conclusion: 

To conclude this work, we can notice that 

environmental taxation is a tool and instrument to deal with 

climate change, but remains a difficult procedure to 

implement like all tax regulations, green taxation was 

introduced in the payroll of the European Union since the 

1970s, this aspect has been developed either at the level of 

the differentiation of taxes and levies, and to broaden the tax 

revenue, or at the level of the expenditure target by the 

financing of actions environmental protection. 

 Morocco is following a journey to implement environmental 

taxation and then generalize it in the Moroccan tax system. 

We note that Morocco has taken a big step forward in 

establishing procedures and laws for the establishment of 

taxes related to environmental protection, such as framework 

law n ° 99-12 on the National Charter Environment and 

Sustainable Development encourages, but the real debate 

which aims to analyze the revenues of environmental 

taxation, either at the level of fundraising, or at the level of 

targeted expenditure. 

 Moroccan companies accept the introduction of Eco taxes 

but they ask that the funds collected should be paid into 

actions for the protection of the environment and not to be 

paid into the state budget. At this level, we really have to 

question the efficiency of the management of these funds. 
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