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Abstract—In this paper, we study the Dirichlet problem asso-
ciated to the degenerate nonlinear elliptic equations

{Lu(m) =p inQ,

u(zx) =0 on 99,
where
Lu(z) = —div [wl(x)A(x, Vu(z)) + wa(x)B(z, u(z), Vu(ﬂc))]
+ wi(@)g(z,u(z)) + wa(z)H(z,u(z), Vu(x)),
is a second order degenerate elliptic operator, with 4 : Q x
R" —- R B:OXRXxR" — R, g:Q2xR—Rand H :

QxR xR™ — R are Caratéodory functions, who satisfies some
conditions, and the right-hand side term 1 belongs to L'(Q) +

I1L” (Q,w!™? /), w1 and wo are weight functions that will be
=1

j=
defined in the preliminaries.

Index Terms—Nonlinear degenerate elliptic equations, Dirich-
let problem, weighted Sobolev spaces, weak solution

I. INTRODUCTION

Let 2 be a bounded open subset in R™ ( n > 2), 0f) its
boundary and p > 1 and w;, wo are two weights functions
in Q(w; and w, are measurable and strictly positive a.e. in
). Let us consider the following nonlinear degenerate elliptic

problem
Lu(z) = p
u(z) =0
where, L is a second order degenerate elliptic operator

Lu(z) = —div [wl(w)A(x, Vu(z)) + we(2)B(z, u(z), Vu(x))}

in
’ 1
on 012, M

+ wi(@)g(z,u(z)) + wa(z)H(z,u(x), Vu(z)), ((2)
and N
M:fO_ZDjfja 3)

with fo € L'(Q) and for j = 1,...,n, f; € LV (Q,wl ™).
Furthermore, the functions A: QO xR* — R, B: O xR x
R" - R, g:OxR—Rand H: QxR xR* — R
are Caratéodory functions, who satisfying the assumptions of
growth, ellipticity and monotonicity.

In the past decade, much attention has been devoted to
nonlinear elliptic equations because of their wide application
to physical models such as non-Newtonian fluids, boundary
layer phenomena for viscous fluids, and chemical heteroge-
nous model, we mention some works in this direction [1], [4],
[5], [7]. One of the motivations for studying (1) comes from
applications to electrorheological fluids (see [19] for more
details) as an important class of non-Newtonian fluids.

In general, the Sobolev spaces W*P(Q) without weights
occur as spaces of solutions for elliptic and parabolic par-
tial difierential equations. For degenerate partial differential
equations, where we have equations with various types of
singularities in the coefficients, it is natural to look for
solutions in weighted Sobolev spaces [2], [4], [12], [13], [16].
The type of a weight depends on the equation type.

For w1 = wy =1 (the non weighted case) and A(z, Vu) =
g = 0, Equation of the from (1) have been widely studied in
[10], where the authors obtain some existence results for the
solutions (see also the references therein).

Boccardo et al. [6] considered the nonlinear boundary value
problem

—div(a(z,u, Vu)) + g(x,u, Vu) = u,

where € L'(Q) + W12 (Q) and g(z,u, Vu) € L'(Q). By
combining the truncation technique with some delicate test
functions, the authors showed that the problem has a solution
u € VVO1 "P(Q). Furthermore the degenerate case with difierent
conditions haven been studied by many authors (we refer to
[11], [22] for more details).
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In [3], the authors proved the existence results, in the
setting of weighted Sobolev spaces, for quasilinear degener-
ated elliptic problems associated with the following equation
—div(a(m,u,Vu) + g(z,u,Vu) = f — divF, where g
satisfies the sign condition.

In [8] the author proved the existence of solutions for the
problem (1) when w; = wy and A(z, Vu) = g = 0. When
H(z,u,Vu) = g = 0 existence result for the Problem (1)
have been shown in [9].

Our objectif, in this paper, is to study equation (1) by adopt-
ing Sobolev spaces with weight WO1 P(Q,wy) (see Definition
2.3). By apply the main theorem on monotone operators (see
Theorem 2.3), we show that the Problem (1) admits one and
only solution u € Wy (Q,w;).

The paper is organized as follows. In Section 2, we give
some preliminaries and the definition of weighted Sobolev
spaces and some technical lemmas needed in our peper. In
Section 3, we make precise all the assumptions on A, B,
g, H and we introduce the notion of weak solution for the
Problem (1). Our main result and his proof, the existence and
uniqueness of solution to Equation (1), are collected in Section
4. Section 5 is devoted to an example which illustrates our
main result.

II. PRELIMINARIES

In this section, we present some definitions, and preliminar-
ies facts which are used throughout this paper.

By a weight, we shall mean a locally integrable function
w on R™ such that w(z) > 0 for a.e. z € R™. Every weight
w gives rise to a measure on the measurable subsets on R”
through integration. This measure will also be denoted by w.
Thus,

W(E) = /w(x)dx

E

for measurable subset FE C R™.

For 0 < p < oo, we denote by LP(,w) the space of
measurable functions f on €2 such that

B =

1 () = / (@) Peo(x)de
E

where w is a weight, and €2 be open in R™.

It is a well-known fact that the space LP({2,w), endowed
with this norm is a Banach space. We also have that the dual
space of LP(,w) is the space L¥ (€, w'~?").

We now determine conditions on the weight w that guar-
antee that functions in LP(),w) are locally integrable on €Q.

Proposition 2.1: [17], [18] Let 1 < p < oo. If the weight w
is such that

wi T € LE_(Q) it p>1,

1
ess sup — < oo if p=1,

reB w(l’)
for every ball B C (). Then,

LP(Q,w) C L, ().

As a consequence, under conditions of Proposition 2.1, the
convergence in LP(Q,w) implies convergence in L}, ().
Moreover, every function in LP({,w) has a distributional
derivatives. It thus makes sense to talk about distributional
derivatives of functions in LP (2, w).

A class of weights, which is particularly well understood,
is the class of A,-weight that was introduced by B. Mucken-
houpt.

Definition 2.1: Let 1 < p < co. A weight w is said to be an
Ap-weight, or w belongs to the Muckenhoupt class, if there
exists a positive constant C' = C(p,w) such that, for every
ball B C R"

(|;|/Bw(x)d:v> (ul?'/B(w(x))pﬁ dm)pl <Cifp>1,

1 1
<|B /Bw(x)dm> ess zlelg @) <C
where |.| denotes the n-dimensional Lebesgue measure in R™.
The infimum over all such constants C is called the A,
constant of w. We denote by A,, 1 < p < oo, the set of
all A, weights.

If1<qg<p<oothen Ay C A; C A, and the A4,
constant of w equals the A, constant of w (we refer to [15],
[16], [20] for more informations about A,-weights).

Example 2.1: (Example of A,-weights)

if p=1,

@) If w is a weight and there exist two positive constants
C and D such that C < w(x) < D for a.e. z € R,
then w € A, for 1 < p < oo.

(i)  Suppose that w(z) = |z|", x € R™. Then w € A, if

and only if —n <n <n(p—1) for 1 <p < oo

(see Corollary 4.4, Chapter IX in [20]).

Let Q be an open subset of R™. Then w(x) =

er?(@) € Ay, with o € WL (Q) and \ is sufficiently

small (see Corollary 2.18 in [15]).

Definition 2.2: A weight w is said to be doubling, if there
exists a positive constant C' such that

(iii)

w(2B) < Cw(B),

for every ball B = B(x,r) C R", where w(B) = | w(z)dz

and 2B denotes the ball with the same center as BBwhich is
twice as large. The infimum over all constants C is called the
doubling constant of w.
It follows directly from the A, condition and Hélder inequality
that an A,-weight has the following strong doubling property.
In particular, every A,-weight is doubling (see Corollary 15.7
in [16]).

Proposition 2.2: [21] Let w € A, with 1 < p < oo and let
E be a measurable subset of a ball B C R™. Then

E|>p w(E)
=) <o)
(IBI

where C' is the A, constant of w.

w(B)
Remark 2.1: If w(E) = 0 then |E| = 0. The measure w and
the Lebesgue measure |.| are mutually absolutely continuous,

IJOA ©2021 2
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that is they have the same zero sets (w(E) = 0 if and only
if |E| = 0); so there is no need to specify the measure when
using the ubiquitous expression almost everywhere and almost
every, both abbreviated a.e..
The weighted Sobolev space W1 (Q, w) is defined as follows.
Definition 2.3: Let 2 C R™ be open, and let w be an A,-
weight, 1 < p < co. We define the weighted Sobolev space
WhP(Q,w) as the set of functions u € LP({),w) with weak
derivatives D;u € LP(Q,w), for j = 1,...,n. The norm of u
in WhP(Q,w) is given by

allfy 20y = /Q fu()Peo(e)de+ " /Q |Dju(e) Pu()de.
j=1

We also define W,”(Q,w) as the closure of C§°(Q) in
WP (Q,w) with respect to the norm ||.| |y 1.6(q. ). Note that
C5°(Q) is dense in W, P (92, w).

Equipped by this norm, W'?(Q,w) and Wy (Q,w) are
separable and reflevixe Banach spaces (see Proposition 2.1.2.
in [21] and see [18] for more informations about the spaces
WP(Q,w)). The dual of space WyP(Q,w) is the space
Wy b (Q,wl ).

Let us give the following theorems which are needed later.

Theorem 2.1: [14] Let w € A, 1 < p < oo, and let 2 be a
bounded open set in R™. If w,, — u» in LP(Q), w), then there
exist a subsequence (u,, ) and a function ® € LP(f2,w) such
that

@) um, () — u(x), mp — oo, w-a.e. on L.

(i)  |wm, ()] < ®(x), w-a.e. on Q.

Theorem 2.2: [11] (The weighted Sobolev inequality) Let
we Ay, 1 <p < oo, and let © be a bounded open set in
R™. There exist constants Cp and ¢ positive such that for all
u € Wol’p(Q,w) and all # satisfying 1 <6 < - 46,

]l or(@,w) < CalVullLr@w)

where Cq depends only on n, p, the A, constant of w and the
diameter of €.

Theorem 2.3: [22] Let A : X — X* be a monotone,
coercive and hemicontinuous operator on the real, separable,
reflexive Banach space X. Then the following assertions hold:

(a) For each T € X*, the equation Au = T has a
solution u € X.
(b)  If the operator A is strictly monotone, then equation

Awu =T has a unique solution u € X.

III. BASIC ASSUMPTIONS AND NOTION OF SOLUTIONS
A. Basic assumptions

Let us now give the precise hypotheses on the Problem
(1), we assume that the following assumptions: ) be a
bounded open subset of R*"(n > 2),1 < ¢ < p < o0,
let w; and wo are two weights functions, and let A;
QxR* — R, B OxRxR*" — R (G =
1oom), with B(w,n,€) = (Bi(,1,€), ... Bu(w,7,€) ) and

A@,6) = (A1(@,8), 0 An(2,6)), g+ @ x R — R and
H: QxR xR" — R satisfying the following assumptions:

(A1) For j =1,..,n, Bj, A;, g and ‘H are Caratéodory

functions.

(A2) There are positive functions
hl, hg, hg, h4, h5, h6 S LOO(Q) and
K1, K1 € LP'(Q,wl)(With T ) and

Ky, K3 € Lq,(Q7w2)<with % + % = 1) such that :

Az, 6)| < Ki(x) + ha(2)[€]7,
|B(,,6)| < Ka(x) + ha(x)|n| 7 + hs()e]7,
lg9(a,m)| < Ka(@) + ho()[n]7,
and
M (2,0, )| < Ka(x) + ha(x)n| 7 + hs(@)|€]7.
There exists a constant o > 0 such that :
(A(z,€) — A(z,€),6 - &) > alg — €7,
(B(xz,1,6) = B(xz,n,€),6 =€) >0,
(96@.m) = gla.n)) (n=n") = 0,

(A3)

and
(H(em.0) =A@, ) (n=n) =0,

whenever (,£), (n',¢&') € R x R™ with 5 # 77/ and
¢+ ¢

product in ]R”) .

where (.,.) denotes here the usual inner

(A4) There are constants A1, A2, A3, Ay > 0 such that :

<"4(‘T7£)7€> Z )\1‘§|pa
<B($vn7£)7£> Z )\2|£|q + >\3|77|q7

g(x,mn > \nl?,

and

H(w,n,§)n > 0.
B. Notions of solutions
The definition of a weak solution for Problem (1) can be
stated as follows.

Definition 3.1: We say that an element u € W, (Q,w,) is
a weak solution of Problem (1) if :

/(A(x,Vu),Vnp)wldx—F/(B(m,u,Vu),V(p}u)gdx
Q Q

+/g(x7u)apw1dx+/H(xm,Vu)gowgdx
Q Q
:/focpderZ/ijj(pdx,
Q =/e

for all ¢ € Wy (Q,wi).

Remark 3.1: We seek to establish a relationship between
wy and wsq, in order to ensure the existence and uniqueness
of solution for our Problem (1). At first we notice if % €

IJOA ©2021 3
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L#(Q,wy) where s = ﬁ, l1<g<p<ooandwi,wy € A4,
then, by Holder inequality we obtain

ul|La(,w2) < Cpgllul|Lr(@.um)

1/q

where C), 4 = (1)

IV. MAIN RESULT
A. Result on the existence and uniqueness

In this subsection we will state the existence and uniqueness
of solution to Problem (1) in Theorem 4.1. In the next
subsections we will present the proof.

Theorem 4.1: Let 1 < q < p < oo and assume that (A1) —
(A4) holds. If

(i) fo/wz € LY (Qws) and f;/wi € LP (Qw1) (j =

1,...,n).
(i7) wzl),wg € Ay such that 22 € L*(Q,w1), where s =
p=q’

Then, the Problem (1) has only one solution u € Wy (€, w).

B. Proof of Theorem 4.1

The basic idea of our proof is to reduce the Problem (1) to
an operator equation Au = T and apply the Theorem 2.3. The
proof of Theorem 4.1 will be divided into several steps.

1) Equivalent operator equation: In this subsection, we use
the somme tools and the condition (A2) to prove an existence
the operator A such that the Problem (1) is equivalent to the
operator equation Au = T. We introduce the operators

T: WP (Quw) — R

/fwderZ/fJ Djpdz,

o — T(p

and

B: WP (Qw) x WP (Q,w) — R
(’LL, QO) — Bl(ua 90) + BQ(U> 90) + B3 (’LL, 50) + B4(ua Qo)v

where, B, By, B3 and B, are defined as follows
L W P(Q,w1) x Wi P(Q,wy) — R
Biu¢) = [ (Ale, V), Vghurda,
Q

2 WOLP(Q,wl) X Wol’p(Q,wl
Bo(u, ) = / (B(z, u, Vi), Vig)wndz,
Q

)— R

Bs : WP (Qw) x Wit (Q,w) — R

Bs(u, ) = [ g(x,u)pwidz.
Q

B, : W&’p(Q,wl) X Wol’p(Q,wl

/ H(z, u, Vu)pwade.
Q

Then u € W,?(Q,w;) is a weak solution of Problem (1) if
and only if

B(u, ¢)

) — R

B4(U, QO) =

=T(p), forall v € Wy"(Q w).

We will show that T € W, > (Q,w;
for each u € W, (1, wl)

(i) Using Holder inequality and Theorem 2.2(with 8 = 1),
we obtain

()] )
g/ Fol ¢l da:+z/ 51 1Dy da
Q oo

) and B(u, .) is linear,

< Cp,quO/W2||Lq’(Q}wQ)JFZHfj/leLp’(Q,wl) H‘P”WOLP(Q,M)-
j=1

According to fo/wy € L9(%, Ldg) and f/wy €
L (Q,w:), we deduce that T € W, " > (Q,wi).
(ii) Let u € W, P(9,w). We have
B(u, @)l < [Bu(u, 0)| + [Ba(u, 0)| + [Bs(u, @) + [Ba(u, 9)|-
“)
In (4), by (A2), Holder inequality, Remark 3.1 and

Theorem 2.2(with # = 1), we have

By(uw)| < / Az, V)| [Viplwr da
(9]

/ <K1 + h1|Vu|§) |Vp|wide

IN

(||K1||Lp o Il @l s g ) 1 7
and

Ba(u, )| < |1B(x, u, Vu)||[Vplwadz

a
Py

IN

/ (K2+h2|u| + h3|Vu|a )\ch|wzdx

<Kol Lo (,0) Cral VOl Lo wn) + ||h2||L°°(Q)Cp,q||UHLp (Qwr)

p7q||v¢”LP Qi) T ||h3||L°°(Q PQHVU’HLP(Q w1) Chyq |V<P||Lﬂ(9,w1)

Cp.all K2l Lo (0.m0) + Cg (1h2llLoe (@) + |Ihs]| o (2)

Il o] el eon

Analogously, we have

Bawo)l < [ lolaw)lighnds

2

< (Il + el @il ) el
and

B4 (u / |H (2, u, Vu)||p|wadx

IN

L (©,02) T €. 9 (Nhallp @) + ksl L= (o))

i M(M} ||so|\w01,p<g,wl>.

IJOA ©2021 4
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Hence, in (4) we obtain, for all u € Wol’p(ﬂ, w1),

IB(u, ¢
< [||K1||Lp/(sz,w1) + 1 Kall Lo () + Cptq(”K?)HLq/(sz,wz)

el o @) + (Il + ol ) el g

+C;§,q<llhzllm(m + |3l e @) + |[hallLo ) + Hh5||L°°(Q)>

[

lly o oy | 1t 2

Since B(w,.) is linear and continuous, for each u €
Wy P(Q,w), there exists a linear and continuous
operator denoted by A WP (Quw) —
Wo_l’p,(Q,wi_p/) such that

(Au, p) = B(u, p),

where (f,z) denotes the value of the linear functional f
at the point x . Moreover, we have

for all u, o € Wy (Q,w;),

Al
< K 2o 20y + 18l 2 @100) + Cat (1K (0,00

P
Bl 0)) + (Il + sl @) el
+C§,q<||h2||L°°(Q) + [[hsll Lo (@) + [|hall L= 0) + ||h5||L°°(Q))

q—1

||u||W01'p(Q7w1)7

where
Al = sup{<Au,so>| — B, )

is the norm in W, %' (Q,wl ™).
Consequently, Problem (1) is equivalent to the operator equa-
tion
Au=T, ue Wy P(Q,w).

2) Coercivity of the operator A: In this step, we prove
that the operator A is coercive. To this purpose let u €
Wol’p(ﬂ,wl), we have

(Au,u) = B(u,u)

:/<A(m,VU),VU>w1dac+/<B(m,u,Vu),Vu>deac
Q Q

+/ g(z, w)uwdz + / H(z, u, Vu)uwadz.
Q Q
Moreover, from (A4) and Theorem 2.2(with 8§ = 1), we obtain

(Au,u)y > /\1/|Vu\pw1dx+/\2 |Vu|Twadz

Q
+)\3/ |u|qudx+)\47 |u|Pwrdx
Q Q

> min(Ar1, A4) {/ |Vu\pw1dx+/ \u|pw1d4
Q Q
+ min(Az, \3) /|Vu|qudx+/ |u|*wadx
Q
= i A minO ) [l
>

min(u, A [l

el ran =1

Hence, we obtain
(Au, u)

_ AW i, A P
||UHW01~P(Q,M)

Wy P (Quwi)
Therefore, since p > 1, we have
(Au,u)

W — 00 as [[ullypr ) — 00,

that is, A is coercive.

3) Monotonicity of the operator A: The operator A is
strictly monotone. In fact, for all uy,uy € WO1 P(Q,wy) with
u1 # uz, we have

<A’LL1 — A’LLQ,’LLl — ’LL2> = B(ul,ul — UQ) — B(UQ,Ul — UQ)

- /Q<,4(x,wl) — Az, Vug), V(ug — ug))widz
+/Q<B(w7u1, Vuy) — B(x, uz, Vuz), V(ur — uz))wadz
+ / (g, m0) = gl 02) ) (w1 = 2 ) ndl

+ /Q (H(az, u1, Vuy) — H(z, ug, Vm)) (u1 — UQ)WQCZ.CL‘.

Thanks to (A3), we obtain

Y

(Auy — Aug, up — ug) a|V(up — ue)|Pwide

\%

Q
> ol Vi - )2, g,

and by Theorem 2.2(with § = 1), we conclude that
o

_ _ > P
s = Ay, —uz) - 2 gyl = uzllyr g o)

Therefore, the operator A is strictly monotone.

4) Continuity of the operator A: We need to show that
the operator A is continuous. To this purpose let u,, —
u in WyP(Q,w;) as m —s oco. Note that if u,, — u in
Wy (Q,w:), then u,, — u in LP(Q,w;) et Vu,, — Vu
in (LP(Q,w))". Hence, thanks to Theorem 2.1, there exist
a subsequence (u,, ), functions ®; € LP(Q,w;) and P €
LP(£2,wn) such that

U, () — u(x), w1 — a.e. in Q

|umk ($)| < (I)l(x), wy — a.e. in Q
(5)
Vi, () — Vu(z), w; —a.e. in

[Vt (2)] < @2(2),

wy — a.e. in €.

We will show that Au, — Au in W, "7 (Q,w! ™). In
order to prove this convergence we proceed in four steps.
Step 1:

For j = 1,...,n, we define the operator

Fj WP (Qw) — LP (2, wi)
(Fju)(z) = Aj(z, Vu()).

We now show that the operator F}; is bounded and continuous.

(Q,w2)

IJOA ©2021 5
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(i) Letu e I/VO1 "P(Q,wy). Using (A2) and Theorem 2.2(with
0 = 1), we obtain

@

’
HFju”ip’(val)

S/Q<K1+h1|vu|5/)p,w1dx

< Cp/ K + hfl\Vu|p) widx

/ |Aj(:c,Vu)\plw1dx
Q

HKllle @ T 1Mo @ IVl o0 0

o [ S L T T T

L (Q,wi) WP (Quwi) ]’

where the constant C depends only on p.

Let t,, — u in Wy (Q,w1) as m — co. We need to
show that Fju,, — Fju in LP (Q,wl). We will apply
the Lebesgue s theorem and the convergence principle in
Banach spaces.

By (A2), we obtain

(ii)

il
|F iy, — Fyull?’ (i)

L (Q wl)

= [ 1Byt () = Fyuo) nds
Q

: / (A (2, Vg, )| + | A; (2, V) )P wydae
Q
<Cy [ (M Tum )P+ Ay, T )
4 2\? 2\
< Cp/ [(K1 + hl\wm,cp') + (K1 + h1|Vu|p’) } widz
Q
<2C,C, / (Kf R @5) wyda
Q
<26, (1K gy + 1P e 122115 | -
Hence, thanks to (A1), we get, as k — oo
Fjtm, (x) = Aj (2, Vg, () — Aj(z, Vu(z)) = Fju(z),

for almost all = € (). Therefore, by Lebesgue’s theorem,
we obtain
| Fjum, — Fiull o (@wy) — 05
that is,
Fitl, — Fju in  LP (Q,w:).

Finally, in view to convergence principle in Banach
spaces, we have

Fjuy, — Fju  in L (D, w1). (6)
Step 2:
For j = 1,...,n, we define the operator
Gy Wy (Q,wr) — LY (Q,wg)
(Gju)(x) = Bj(x, u(x), Vu(z)).

We also have that the operator G is continuous and bounded.
In fact,

IJOA ©2021

Let u € WyP(Q,w). Using (A2), Remark 3.1 and
Theorem 2.2(with 6§ = 1), we obtain

’
HG]U’”qu’(Q wo

/(K2+h2|u| + hs|Vu| ) wodx

/ 1B, (x,u, Vu)|q/oJ2dx

< Cy || |KE 4R Tl 4R V0l wode

< Ca IRl gy + 1B o 10 )
—|—Hh3‘_|%/oo(g)||vu||%q(n ws)

< Cy|1K21F 1 gy + 12 ) C.
+Hh3‘JqLOC(Q)Cg,q”quLP(Q w1)

<y ‘K2||(gq’(g,w) + Cg,q(‘thqum(Q)

|
1 ) il 1 )

where the constant C, depends only on g.

Let uy, — u in Wo’p(Q wi) as m — oo. We will
show that Gju,, — Gju in LY (€, wy).

According to (A2) and Remark 3.1, we obtain

Gyt = Gyl gy = | 1Gsm. (0) = Gyula)

</ (\B](x Uy s VU, | + |Bj (2, u, Vu)\)q wodx

<),

{/ K2+h2|umk|q +h3|Vumk|q) wodx
Q

(|B] T umk,Vumk)|q’ + |Bj(z,u,Vu)|q') wodx
<Gy
+ / (Kz + hg\u| + h3|Vul|a )q/ LUle‘:l
<20,C, /Q Kg' + Y B9+ hg'ég) wada
< 2C,Cy (1Kl g0y + 172l 1211

s 0122 |
< 26,0, K7y 0 + Challizloe 1211

O3 I3l 1221 1|
Then, by (A1), we have, as kK — oo

Gjtm, (x) — Gju(z), ae ze.

Therefore, in view to Lebesgue’s theorem, we have
|Gt — GjuHLq/(Q7w2) — 0,

that is,
Gjum, — Gju in L9 (2, ws).

Hence, from the convergence principle in Banach spaces,
we conclude that

Gjum — Gju  in Lq/(Q,WQ). @)
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Step 3:
We define the operator

H: Wy P(Q,w) — LV (Q,w))

(Hu)(z) = g(z,u(z)).
In this step, we will show that the operator H is bounded and
continuous.

(i) Let u € W,P(Q,w;). Using (A2), we obtain
pl
Loy = 9@l ods

< /Q (K4 + h6|u|§)pl widx

< Cp/ (Kf’ + h£’|u\p) widx

| Hull?

Co (Il gy 00 + Il 60 )|

< cp 1Kol o @00y + 168 ey 0151 ]

where the constant C}, depends only on p.

(ii) Let u,, — w in VV0 P(Q,w1) as m — 00. We need to
show that Hu,, — Hu in L¥' (Q,w).
By (A2) , we get

| Ht, — Hull?

LP (Qw1)
= / |Hti, () — hu(z)|” wida
(9]
< [ (ot + lafe ) wrdo
<G, [ (lg€oum ) + g ) wrdo
Q
<C / K4+h6\umk\£’
<20,C) / (Y + @) wnda
Q
< 20,Cp (1Kl )+ W61 ) 1911 |
then, using condition (H1), we deduce, as £k — oo

Huty, (2)) — Hu(x),

V' (K + helul ¥ )| wrda

a.e. z € (.
Therefore, by the Lebesgue’s theorem, we obtain
[ Hum,, — Hull 1o (,w,) — 0;
that is,
Huy,,, — Hu in Lp/(Q,wl).

We conclude, from the convergence principle in Banach
spaces, that

Hu,, — Hu in L” (Q,w:). (8)

Step 4:

We define the operator
H : WP (Q,w1) — L7 (Q,ws)
(Hu)(x) = H(z,u(z), Vu(x)).

We now show that the operator H is bounded and contin-
uous.

(i) Let u € Wol’p(Q,wl). Using (A2) and Remaek 3.1, we
obtain

1l gy = [ 1o u0), Fula))]

a a q’
S/ (K3—|—h4|u|</ —|—h5\Vu\q’> wodx
Q

<C, A [Kg/ + bl ful? + h§l|Vu\q} wodx

< Cy 1K1, g+ sl oy il

155 1V 0

S Cq ||K3||q ng) + Hh4||q0<> Q) pq”u”LP Qw1)

+ Hh5||L<X>(Q) P, quuHLp(Q,wl)

< Cy [IKI1Y gy + Cot (10l )
+||h5”%oo(g) Hu”?/[/(}’p(ﬂ,wﬂ ’

where the constant C’ depends only on g.
(i) Let u,, — u in W0 ’p(Q wi) as m —» oo. We need to

show that Hu,, — Hu in LI (Q,w,).
According to (A2) and Remark 3.1, we have

| Htyn,, — Hull?

LY (Q,w2)
q/
< / (|H(:c,umk7Vumk)| + |’H(x,u7Vu)|> wodx
Q
< CQ/ (|H(I7umk7vumk)|q/ + \’H(x,u, vu)‘q/> wadz
Q /
<, [/ (Kg + h4|umk| + hs| Vi, |7 ) wadx
+ / (KS + halu|® + hs| V|7 ) wgdm]
Q
< 2ch;/ K+ hd @0 + q>g) wodz
<2C,C, [llell @y T 1Pl T (@) 191110 ()
+ Hh5||qL00(Q)||(I)2HLq Q,w)
<20,C, [||K3||

Qw2 ) p,q||h4|| OO(Q)H(I)1||%P(Q,UJ1)

+ Cg,q|‘h5||Loo(Q)||(I>2HLP(QM1)
Hence, from (A1), we deduce, as k — oo
Hupy, () — Hu(z), ae. z Q.
Therefore, by the the Lebesgue’s theorem, we obtain
[ H o, — FIU’HLLI’(Q,wQ) —0,
that is,
Hup, — Hu in L9 (Q,w,).

Thanks to convergence principle in Banach spaces, we
conclude that

Hu,, — Hu in L9 (Q,ws). 9)

IJOA ©2021 7
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Finally, let ¢ € VVO1 P(Q,wy) and using Holder inequality,

Theorem 2.2(with # = 1) and Remark 3.1, we obtain

By (1, ) — B (11, 0)
oy / (A(z, Vi) — A(z, V), Vig)undal

< Z
= Z/ |Fjum — Fju||Djplwidx
j=1"9

<Y I Fjum = Fiull 1 .0 1 D2l Lo @)
j=1

\.A z, V) — Aj(z, Vu)||D;e|lwidz

n
S Bt — Fyull o ey | 1l
j=1

B2 (1, ©) — Ba(u, p)|

= | / <B(J), Um vum) - B(x, u, VU), v<p>w2d.7}|
Q

< E /|Bj(x,um,Vum)—Bj(x,u,Vu)||chp|w2dm
— Jo

= E /|GjumijuHng0\w2dx
j=1"9

Y NIGium = Gjull o (@) | 1Vl L0(0202)

Jj=1

n
< Chyq Z ||Gjum - Gju||L<1’(Q,w2) ||V<PHLP(Q,w1)
j=1

n

< Cog | SoN1C 1m — Gl iy | N6l

Jj=1

- Bg(’u, 90)|
< /Q 9 1m) — g(, )| plwrde

‘B?)(um? 90)

:/ |Http, — Hul|p|wr dx

Q
S ||Hu7n -
S ||Hum -

Hull o (0 0y 0l Lr (2,00)
HU||Lp’(Q,w1) ||50||W01"’(Q,w1)’

and

|B4(uma 90) - B4(u7 L)0)|
/ [H (2, U, V) — H(z,u, Vu)||p|lwadz
/Q |Hup, — Hul|p|wada

< HHum - HUHL‘J (Q2,w2) ||<,0||Ltz (Q,w2)
< quHHUm - HU”Lq (sz,m)”‘PHWO P(Qwr)

Hence, for all ¢ € Wol’p(Q,wl), we have

‘B(umv 90) - B(uv 90)|
< |B1(um7 90) - Bl(”? 90)‘ + |B2<um7 90) - BQ(”? 90)‘

+B3(um, p) — Ba(u, 9)| + [Ba(um, p) — Ba(u, ¢)|
< [ (1B un = Fyullp q.00) + Crall Gt = Gl )

j=1

I Hum — Hull 1o (0,0,) T CpogllHtim — Hul o «, m)] lellwar (@)
Then, we get

|Aw, — Aul|.

<> (HFjum = Fyull oo (0.u,) + Cpall Gitm — Gju||Lq'(Q,wQ))
j=1

+ Hup — HUHLP’(Q,wl) + Op,q”ﬁum - HU”LQ’(Q,wz)'

Combining (6), (7), (8) and (9), we deduce that
Aty — Aulj. — 0 as m — oo,

that is, A is continuous.
Hence, the proof of the theorem 4.1 is completed.

V. EXAMPLE

Let Q = {(z,y) € R?
weight functions wy (z,y) = (22 + y2)_1 ?
(x2 + y2)71/3 (We have that wy,ws € Ay, p=4and ¢ =3,
and the functions B; : Q x RxR? — R, A4, : O xR? — R

(G=12,9:QxRx — Rand H: QxR xR? — R
defined by

: 22 + y? < 1}, and consider the
and wo(z,y) =

N—

Aj((z,9),8) =
where hy(z,y) = 2e(@ "),

Bj((xv y)a m, 5) = hd(xa y)|£]|€]7
where h3(z,y) = 2 + sin(z? + y?),

hl (I7 y)f;))v

9((z,y),n) = he(z,y)In|*sgn(n),

where hg(z,y) = 2 — sin?(z + y), and
H((xvy)7n7£) = h5(fE, y)£2sgn(n),

where hs(z,y) = 2 — cos®(xy).
Let us consider the partial differential operator

Lu(z) = —div [wl(x)/l(x, Vu(z)) + wo(2) Bz, u(z), vu(m))]

+wi(@)g(z, u(x)) + wa(@)H (2, u(x), Vu(z)),
(10)

Therefore, by Theorem 4.1, the problem

Lu(e,y) = £ - 2 (40) - £ (3548) g,
U(I,y) 70

on 012,
admits one and only solution u € VVO1 ’4(Q7w1).

IJOA ©2021 8
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Performance and analyses using two ETL extraction
software solutions

Abdellah AMINE
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Beni Mellal, Morocco

a.amine@usms.ma

Abstract—

In the prospect of doing a set of decision support onboards in
a public university, we will present a comparison of two ETL
extraction based in a production databases of students'
information. For the deployment, we use Pentaho and Sql
Server Tools and we demonstrate the application on the case
of Sultan Moulay Slimane University in Beni Mellal,
Morocco

Keywords—: Pentaho; Sql Server; Data Warehouse;
Business Intelligence

. INTRODUCTION

Data warehouse (DWSs) is delineated as "subject-oriented,
more integrated, timely-variant, and non-volatile collection of
data to support the management decision process" [1]. Data
warehouse emphasizes the collection of data from multiple
sources for useful analysis.

At the center of DWs is the extraction-transformation-loading
(ETL) process. ETL is a process utilized to extract data from
multiple sources, transform that data to the desired state
through cleansing, and load it into a target database. The
deliverable is used to generate reports and for analysis. ETL
consumes up to 70% of all the resources [2-5].

In the most professional field, the main approach before
selecting an ETL tool is to perform proofs of concept.
However, it is almost impossible to perform proofs of concept
of all ETL tools available on the market. Then a pre-selection
is made in the way that two ETL suites are kept for testing.
This pre-selection is generally based on criteria summarized
as follows: the category of the tool, the cost, the type of ETL
project, and the proof of concepts.

In this white paper, we will only look at the use of two ETL
tools (Microsoft SQL Server Integration Services SSIS and
Pentaho Kettle) [6] based on the generalized criteria for
selecting the better tool.

Rachid AIT DAOUD

Sultan Moulay Slimane University,
Beni Mellal, Morocco

daoud.rachid@gmail.com

Belaid BOUIKHALENE

Sultan Moulay Slimane University,
Beni Mellal, Morocco

b.bouikhalene@usms.ma

Il. RELATED WORK

In the recent years, a number of different approaches have
been suggested for the design, optimization, and automation
of ETL operations. In this section, we present a brief overview
of these several approaches [7]. Some of the leading data
integration vendors are IBM, Informatica, Oracle, Microsoft,
Talend, Pentaho, Information Builders, etc.

There are many available research papers that offer a
comparative view of the leading ETL tools in the market, such
as [8-9]. They analyze in details the functionalities and
features offered by these tools, and it can be deduced that all
of them provide support for all the features that define data
integration tools.

Different variants of some approaches for integration of
ETL tools with data warehouses have been proposes. Shaker
H. Ali ElSappagh tries to navigate through the efforts that
have been made to use acronyms for ETL, DW, DM, OLAP,
lon-line analytical processing.A data warehouse gives a set of
numerical values based on a set of input values in the form of
dimensions [10]. Li, Jain, overcame the limitations of the
traditional architecture of Extract, Transform, Load tools, and
developed a three-layer architecture based on metadata. This
made the ETL process more flexible, versatile and efficient,
and finally they designed and implemented a new ETL tool
for the drilling data warehouse [11]. A systematic review
method was proposed to identify, extract, and analyze the
main proposals for modeling the conceptual ETL process for
data warehouse. The main proposals were identified and
compared based on the characteristics, activities, and notation
of ETL processes, and the study was concluded by reflecting
on the studied approaches and providing an update skeleton
for future studies.

IJOA ©2021 10
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I1l. FEATURE COMPARISON BEWEEN PDI AND SSIS

In this section, we are going to do a comparative study of
the features for the two extraction tools, especially the Pentaho
Data Integration and the Microsoft SQL Server Integration
Services

A. Access to data

Table 1. Access to data

features PDI SSIS
Read the full table v v
Complete view of v v
reading
Calling stored v v
procedure
Uploading clause v v

where/order by

Query v v

Query Builder

v v
Reading / writing all
simple and complex
data types
Read the full table v v
csv v v
Fixed / Limited v v
XML v v
Excel v v
Validity flat files X v
Validity of XML files v v

For the access to relational data, flat files and applications
of connectors, PDI and SSIS are good solutions for
thesefeatures.The two tools allow the analysis of data from
various sources to determine the transformations necessary to
perform aggregations, data deletions, automatic corrections of
errors, etc.But for the validation of the flat files, the SSIS tool
is more robust in comparaison to PDI.

B. Triggering pocess

Table 2. Triggering process

features PDI SSIS

CORBA X v

XML RPC X v
JMC X X

MOMS X v
Index v v
POP v v

We note for the triggering process by message, the
PDI tool is not suitable for this procedure, whereas for the
trigger by type of polling the two tools are robust.
Oracle is the only database that supports JMS natively in the
form of Oracle Advanced Queueing. If the message receiver
is not tookeen on thisJIMS implementation, it is usually
possible to find some sort of messaging bridge that will
transform and forward messages from one JMS
implementation to another.

C. Data processing

Table 3. Data processing

Features PDI SSIS
Transformation v v
functions of dates and
numbers
Statistical functions X v
qualities
Allows transcoding with X v
areference table
Heterogeneous joints X v
Supported modes of joint external v
Management of nested X v
queries
Treatment options for a v v
programming language
Added new v v
transformations and
business processes
Mapping graphics
Drag and Drop
Graphical representation v v
of flow
Viewing under X v
development data
Impact analyses tools v v
Debugging Tools v v
Generation of technical X v
and functional
documentation
Viewing documentation X v
through the web
Management of For some v

Integration errors StepS
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The two tools provide a mechanism of query directly
in SQL which allows to make all modes of joint and nested
queries.It ispossible with SQL Server to join data from an
active directory to data in a SQL Server and create a view of
the joined data. For the treatment of the data, the two tools are
not compatible for the transformations and calculations by
default, they are recommended for the manual transformations
except for the generation of technical and functional
documents.

D. Advanced development and deployment/production start

Table 4. Advanced development and deployment/production

start
Features PDI SSIS
Application v v
Programming
Interface
Integration of v v
external functions
Crash recovery X X
mechanism
Setting buffers / v v
indexes / caches
Team Development v v
Management
Versioning X v
Compilation X Yes for C#
treatments
Type into Windows or Windows
production Unix command
command line
line
History X X
visualization into
production

It was found that the two tools are not compatible for
the recovery mechanism on incident and for the history
visualization into production,but generally they are used for
the other properties of the advanced development and
deployment of production setting.

E. Administration and security management

Table 5.Administration and security management

Features PDI SSIS
Administration Console v v
Automated log v v
management
Specific log generation X v
Interfacing with X v
monitoring tools
Integrated treatment X v

planning tool

Use of rights of a X X
directory
_ DBMS v
Security type security
which
contains the
repository
Security scenario v v
creation
Security access to v v
metadata
Safety manual task v v
launch
Security Administration v v
Console

We note that the PDI is not compatible for the
generation of specific log, the interfacage with Tools of
Supervision, the planning of integrated treatment and for the
security of the database management system that does not
contain the repository.

IV. COMPARATIVE TREATMENT TIMES

A. Test realization methodology

Testn®
Descriptive
1. Extracting data from an Excel file
2. Loading data into another Excelfile
3. Theinput file contains 5 typed fields:
e COD_IND [NUMBER] (Student Code)
e COD_NNE_IND [NUMBER] (National
ID of the student)
e DATE_NAI_IND [DATE] (Date of birth
of the student)
e LIB_NOM_PAT_IND [String] (Family
name of student)
e LIB PR_IND [String]
name)

(Student's first

B. Modeling in Pentaho Data Integration (PDI) [8]. [9].

3

=, 3 Bomanve _(SONCRTTT
-5 L I T S N S S

o

L

)5 @ €% BFw] e

Fig. 1: Extraction of 1000 rows with PDI
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C. Modeling in SQL Server Integration Services
(SSIS)[10].

data flow and event driven architecture. It allows great
flexibility to the developer to design the structure and flow the
ETL process.On the other side, PDI includes many more
options to access outside data such as a Google Analytics and
several options to access Web services. It can be used on either

Lest11000 (Bxscution) - Microsoft Visual Studio o
Fichier  Editon  Affichage  Projet utls  Fenétre  ?
1< bl uow @ 3

Package.dtsx [Design]

lux de contrdle [[I1 Fiux de denndes | 7] Ge:

Tache de fux da donndas i [U1 Tache de fux de données

Windows or Linux operating systems.

The choice between the SSIS ETL and PDI thus

depends essentially on the typology of the project it leads.

(1
[2
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Fig3: Comparison of the results obtained for the two tools
The performance of the treatment of time is an important
criterion in the choice of an ETL, but from these results we cannot
prejudge the actual performance in a production environment, since
time of execution variesfollowing the typology of treatments.
At the end of our comparative study, we can conclude that
SSIS and PDI are two tools of ETL with their own
specificities. These are real alternatives to the ETL owners as
Informatica Power Centeror Oracle Warehouse Builder. These two
tools offer all the features necessary for an ETL.
V. 5. CONCLUSION
Both SSIS and PDI are robust solutions to perform
ETL in a data warehouse. SSIS emphasizes configuration over
coding; however, because of the limited amount of available
transformation objects, coding will be required to process
complex data. SSIS’s strength comes from its control flow,
IJOA ©2021 13
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Abstract— The monitoring of the cathecol level is clinically
important. In this work a novel C/Ag/SiO2 Sonogel-Carbon
electrode was used for the sensitive voltametric determination
of cathecolamine. A complete characterization of the electrodes
has been performed using scanning electron microscopy,
Raman spectroscopy, cyclic voltammetry, and impedance
spectroscopy. the novel electrode has shown an increase in the
effective area of up to 70%, oxidation peaks and an excellent
electrocatalytic  activity. The electrochemical response
characteristics were investigated by cyclic and differential pulse
voltammetry, the limit of detection is estimated to be in the sub
micromolar regime.

statistical analysis of measurements performed in water
samples has led to good apparent recovery.

Keywords— The statistical analysis, C/Ag/SiO2 Sonogel-
Carbon electrode. Amperometric sensor. Cathecol.

. INTRODUCTION

The application of sensors for clinical measurement are
well recognised in the last ten years. In this work a C/Ag/SiO2
Sonogel-Carbon electrode is used for the sensitive pulse
voltammetry determination of cathecol. The proper choice of
the sensing material, in view of the specific application, is
fundamental since it can impart to the device definite
physicochemical properties and analytical peculiarities. The
main advantages sought by adopting a specific electrode

material are the lowering of the potentials at which charge
transfer processes occur, the enhancement of the rele vant
current and the prevention of the passivation of the surface.
The results of this paper have shown an analytical
performance and an efficient catalytic activity of the electrode
for the electro-oxidation of cathecol. The advantage of
functional materials as an immobilization matrix for sensors
is due to high surface to volume ratio, the presence of reactive
groups on the surface, and fast electron transfer kinetics [1].
In recent years, nanostructured materials gained a very
important role in the development of amperometric sensors
[2]. The high superficial area/volume ratio and the polyhedral
shape induce a quite high number of defects to be present at
the electrode surface, imparting to the material high reactivity
toward species in solution, suitable for the realization of
electrocatalytic processes [3]. The result of our proposed
modified electrode as compared to other electrochemical
methods reported in the literature [4,8] exhibit that our
electrochemical sensor Seems to be very promising and they
can be considered for quantification of cathecol.
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modified with graphene 005 [7] H.Hammani et
Activated carbon ' al., 2019

[8] L. Huanget al.,
2016
0.01 This work

KOH-activated graphene sheets 0.1
carbon film
C/Ag/SiO, Sonogel-Carbon

Il. EXPERIMENTAL

A. Reagents and materials

Cathecol reagent grade =98% (HPLC) is purchased from
Sigma Aldrich (USA). KH2PO4, K2HPO4 for phosphate
buffer and graphite powder (<20 microns) were purchased
from Fluka. Paraffin oil was purchased from a pharmacy. All
other chemicals were of reagent grade and used directly
without further purification. Plastic capillary tubes, i.d. 2mm,
were used as the bodies for the composite electrodes.
Solutions were prepared using deionized double-distilled
water with a measured resistance higher than 15 uS cm—1.

B. Instrumentation

The cyclic voltammetry (CV), differential pulse
voltammetry (DPV) and electrochemical impedance (EI) were
applied to study the behaviour of C/Ag/SiO2 Sonogel-Carbon
electrode. They were all performed with a Voltalab®40, type
PGZ301 from Radiometer (France). A conventional three-
electrode cell (20 mL) was used at room temperature (25+
1°C), the counter electrode was a platinum wire and an SCE,
3M KCI electrode was used as the reference, the C/Ag/SiO2
electrodes were used as working electrode. The scanning
electron microscope (SEM) image was obtained using a
HITACHI X-650 SEM instrument. The statistical validation
was carried out by the MATLAB statistical software.

C. Preparation of the C/Ag/SiO2 Sonogel-Carbon electrode

To prepare the C/Ag/SiO2, the following procedure was
used: 0.1g of silver nanoparticles silica Ag/SiO2 (Scheme 1)
is dispersed in 0.5 M acetic acid solution, then 1g of Carbon
graphite powder was dispersed in the solution until obtaining
a unique phase, and then the mixture was heated at 120°C to
evaporate the acetic acid and water. In the next step, the
carbon powder modified with Ag/SiO2, is dried and was
mixed thoroughly in a mortar with 40% of paraffin oil until
obtaining a homogenous paste. Thus, the plastic capillaries
were filled, leaving a little extra mixture sticking out of the
tube to facilitate the subsequent polishing. For establishing
electrical contact, a copper wire was inserted into the
capillary. Before usage the electrodes were polished with
emery paper No1500, and were electrochemically cleaned by
cyclic voltammetry until obtaining a stable cyclic
voltammograms between -0,80 and 1,50 V in 0,005 mol.L-1
KCI.

\/a

NV
</~

</

L stirring time |
I T

0 min. 15 min all the night

Scheme 1. Procedure for depositing silver nanoparticles on
silica spheres:
1. TEOS, 2. ethanol, 3. ammonia, 4. water, and 5. Ag NPs.

I1l. RESULTS AND DISCUSSION

A. Surface and Electrochemical characterization of

modified electrodes
Scanning microscopy (SEM) was used to explore the difference
in structure between films of carbon paste alone, and those of
carbon paste in the presence of SiO2 (C / SiO2), and mixed
compound of SiO2 and Ag (C/ SiO2/ Ag).

Analysis of the surface of the carbon-only paste electrode
shows a granular structure of carbon. However, the
incorporation of SiO2 into the carbon paste shows a more
structured surface (cauliflower-shaped) with the appearance
of bright white particles. An even better organized
morphology, when silver is added (C / Ag/ SiO2 electrode),
is noted, corresponding to the C paste modified by silica-silver
nanoparticles. In this case, the film generated shows a better
organization and an oriented structure as well as an increase
in the specific surface (Figure 1). The presence of SiO2 and
Ag in the carbon paste therefore seems to have a favorable
effect on the structure of the materials prepared.

Figure 1. (A) SEM images obtained for C electrode. (B)
SEM images obtained for C/SiO2 modified electrode. (C)
SEM images obtained for C/Ag/SiO. modified electrode

To characterize the interface features of the modified
electrode surface we have used the EIS method. The Figure 2
shows that the charge transfer resistance of C/Ag/Si O:
electrode is much smaller than that of C/Si O2 electrode and
the C electrode, suggesting that it is easier to transfer electrons
at C/Ag/SiOz, and this indicates that the incorporation of silver
nanoparticles on silica spheres promote the electron transfer
synergistically and accelerates the diffusion of ferricyanide
towards the modified electrode surface.

The active surface area of the modified electrode was
estimated according to the slope of the ip versus v plot,
based on the Randles—Sevcik equation [9,10]:

Lp = 2.69 x 10°n%2 A¢ DY2 C v 12
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Where Aett is the effective surface area, n is the number of
electrons transferred, D (= 7.6 x 10°° cm? s™!) is the diffusion
coefficient of potassium ferricyanide (Gooding et al., 1998),
and C are the concentration of potassium ferricyanide. The
effective electrode area for C/Ag/SiO2 modified electrode is
approximately 0.058 cm? whereas 0.037cm? for C/SiO2 and
0.032cm? for C electrode.

180
- -
160 C -
="
140 sl CfSi02 .
'
= 120 C/Ag/SiO2 o
g -
£ 100 | o
s
— 80
~
60
40
20 4
o tf
0 50 100 150 200 250 300
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Figure 2. Nyguist plots of EIS in 102 M potassium
ferricyanide prepared in 0.05 M KCI for C/Ag/SiO: electrode
and C/SiO2 electrode and Carbon electrode, Amplitude: 5
mV; frequency range: 100 kHz-10 mHz; potential: OV.

B. Electrochemical Behaviour of cathecol at the Modified
Electrode Use an unique style for units.

Current density [HA/cm’]

Potential [mV]

Densit¢ de courant (pA /em?)

zi (kohm.cm?)

4 [ R 10 7 14

1 (kohmam®)

Figure 3. (A) cyclic voltammetry of 10°M of cathecol at
C/Ag/SiO. electrode and C/SiO:. electrode and Carbon
electrode in PBS (0.05M), pH = 2, T = 25 ° C. (B) Cyclic
voltammograms obtained at different scan rates from the
C/Ag/SiO2 modified electrode in a PBS at pH 2 containing 2
uM of cathecol. Scan rates: 40, 60, 80,100, 120, 140,160 and
180 mV/s, (C) Nyquist plots of 10°M of cathecol at C/Ag/SiO2
electrode and C/SiO: electrode and Carbon electrode in PBS
(0.05M),pH=2,T=25°C.

The Figure 3.A, shows the electrochemical behaviour of the
cathecol at C/Ag/SiO: electrode and C/SiO: electrode and
Carbon electrode in PBS pH 2 using CV; First, the cathecol
(pKa =9,5) presents an electroactive character that appears
with an oxidation peak in the studied potential ranges
(Tables.1), also we noticed the appearance of Epa peak
corresponding to the oxidation of Ag incorporated in the
paste of the modified electrode at 100 (mV)/ECS. The
relationship between the oxidation peak current (ips) and the
square root of the scan rate (vV'?) (Figure 3.B) is linear with
linear correlation coefficients R = 0,9974, indicates that the
electrochemical process is controlled by diffusion.

The (Figure 3.C), shows the Nyquist plots behaviour of the
cathecol at C/Ag/SiO:2 electrode and C/SiO: electrode and
Carbon electrode in PBS pH 2, the (Tables.2) presents the
charge transfer resistance and the capacitance of the electrical
layer at the electrode/solution interface, and the apparent rate
of electron transfer at different modified electrodes.

Electrod 1pa Ipc Ipa/ | Epa Epc AEp

e (HA/cm (MA/cm 1pc (mV)/EC | (mV)/EC | (mV)/EC
2) 2) S S S

Carbon 263.513 - 1.9 592 138 454

electrode 136.987 | 2

C/SiO2 254.479 -147.27 | 1.7 570 178 392

electrode 2

C/Ag/Si 373.19 - 18 506 200 306

02 203.091 3

electrode

Tables.1 Electrochemical characterization of cathecol on

three types of electrodes
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Electrode Rec Cac Kapp

(kohm .cm?) | (uficm?) (cm/s)
Carbon electrode 17.04 10.45 1.56.10°
C/SiOzelectrode 7.239 19.69 3.68.10°
C/Ag/SiO; 1.507 23.65 1.77.10*
electrode

Tables.2 the electrical parameters of the three types of
electrodes

From the table (Tables.2) we notice that the charge transfer
resistance (Rtc) decreases for the Ag / SiO2 carbon paste
electrode, a remarkable increase in the capacitance of the
electric layer (Cdc) and an apparent speed increase of the
electron transfer These results show the efficiency of Ag /
Si02 carbon modified electrode.
Given the results obtained in Figure 3 and Tables 1 and 2,
the presence of SiO2 and Ag in the carbon paste therefore
seems to have a favorable effect on the structure of the
materials prepared. The modified electrode should promote
the sensitivity and the selectivity of determination cathecol.
As a result, C/Ag/SiO2 can accelerate the electron transfer
and decrease the overpotentials of cathecol oxidation at
different levels of difusion modes, which is the key factor to
adjust the problem of adsorptionat the electrod surface and
realize determination directe of cathecol.
3.3. Analytical Calibration Curves of determinations of
cathecol.
The DPV was used to obtain the calibration curve of cathecol
at the modified electrode in PBS pH2. the result in Figure 4
shows the linear relationship between the oxidation peak
current and cathecol concentrations. The peaks intensities are
increased linearly in the range of 1-120 uM, the equation is
Ipa (uA) = 0.3 C + 0.5 with a correlation coefficient of R? =
0,9992 and the detection limit (S/N = 3) estimated to be 0.01
uM in terms of signal to noise ratio of 3:1.

30

di=0,3 C(um) + 0,5 :
25 | R2=0,9992 A
20 f
1s §
10 §

/,’/
ot
s ‘0

o 20 40 60 8O0 100 120
C.p M

Figure 4. Calibration plots of cathecol (from 1 to 120
pmol L)
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3.4 Determination of cathecol at C/Ag/SiOzin Urine.
The objective of this study is the simultaneous detection
of the cathecol in the presence of AA and AU in the
urine. In this context, and in order to evaluate the
applicability of the proposed method for the
determination of the cathecol and AA and AU in urine,
the measurements were conducted in urine samples
diluted 500% (with 0,05M PBS at pH 2) was then added
to this mixture a deferred reports of AA, AU and cathecol
(table 4).

the AA and UA is the principal organic constituents of
urine, the phenomenon of interference on the
electrochemical response of cathecol in the presence of
the urinary AA and UA is one of the major problems that
hinders electrochemical detection of its substances in
biological media, since the unmodified carbon electrode
could not separate cathecol and AA and UA oxidation
peaks. The development of a simple and inexpensive
device for the simultaneous determination and separation
of the electrochemical responses of these substances
remains the challenge of this work.

The Tables.4 shows that the peak currents for cathecol
increase linearly with increases their respective
concentrations, without considerable effects on the other
peak currents of AA and UA while varying the
concentration of cathecol from 10 to 100 pmol L.

In addition, a various concentrations of AA from 20 to
100 pmol L™" in the presence of cathecol and UA exhibit
excellent responses to AA, AU, and cathecol without
any obvious intermolecular effects among them, the peak
current of AA increased linearly with increased
concentration. is also indicated that the peak current of
UA increased linearly with increases concentration of
UA, without considerable effects on the other peak
currents while varying the concentration of UA from 30
to 40 umol L'

These results confirm that the oxidation processes of
cathecol, AA, UA at C/Ag/SiO2 electrode are
independent from each other, this separation allows a
simultaneous determination of AA, UA and cathecol in
a mixture. The C/Ag/SiO2 possessed a higher active
surface area and can separate cathecol and AA and UA
oxidation peaks.
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Table 3:
Simultaneous determination of cathecol, AA and UA in mixtures synthesis samples (xSD; the standard deviation for n=3).
Sample Added (pmol/L) Found (umol/L) Recovery (%)
CATHECOL | AU | AA| CATHECOL | AU AA CATHECOL | AU AA
1 10 30 | 20 9.86+0.2 31+1.5 | 19.6+0.5 98.0% 103.3% | 98.0%
2 30 40 | 40 28.4+1.3 41+2.7 | 38.3+1.5 94.7% 102.5% | 95.8%
3 70 35| 80 68.47+1.8 |33.240.8 | 78.2+2.1 97.8% 100.6% | 97.8%
4 100 40 | 100 98.5+1.7 40.3+1.3 | 98.7+1.2 98.5% 100.8% | 98.7%
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Palacios-Santander., 2020  Preparation  and

The feasibility of the C/Ag/SiO2 sensor is demonstrated for
analytical application, the recovery test was performed by the

standard addition method (Table 3), with 4 different additions characterization of reusable  Sonogel-Carbon
of cathecol, AA and UA to the urine diluted samples, the electrodes containing carbon black: Application as
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The use of electrochemical techniques for the sensitive and Characterization and electrocatalyticbehaviour of glassy
selective determination of cathecol in urine by differential carbon electrode modified with

pulse voltammetry using C/Ag/SiO2 modified electrode was
shows that the C/Ag/SiO2 modified electrode present a
perfect selectivity on the detection of the cathecol in presence
of AA and UA in 0,05M PBS at pH 2, with a detection limit
0,01 umol L™ is obtained. This selectivity is maintained when
the study is conducted in biological fluids such as in urine
diluted 500% with 0,05M PBS at pH 2. Indeed, the results
obtained were validated by the statistical validation methods
and our electrochemical sensor looks very promising and they
can be considered for early quantification of cathecol in
clinical preparations.

C. Conclusions
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Nowadays, Companies are carrying heavier and heavier loads than before,
considering the market requirement, competitors who have become more
numerous in almost all sectors of activity, and above all more creative and
stronger on several fronts: marketing, marketing, productivity

To win in the market, strong companies must have a strong management
system that helps them optimize their costs and differentiate themselves from
others to ensure a comfortable margin

This article reviews the critical optimization problem that can make this
difference. This article will also present the different possible scenarios to
optimize the significant costs of a company by proposing to opt for renewable
energies.

A number of optimization tools will be discussed and analyzed in this article.

Keywords— Renewable energy, optimization, supply chain

I. INTRODUCTION

Nowadays, Companies are carrying heavier and heavier costs
than before, there are some who spend more money on
marketing to market their products and achieve their
objectives in Turnover, others prefer to invest in margin to
have a competitive price compared to competitors ...

The methods to achieve the gain objective are known by
almost all companies, in terms of product marketing for
commercial companies, or to have a competitive cost price
for production companies, or a cost of storage or low
transportation for Logistics Company...[1]

on the other hand they all undergo very heavy loads which
makes them lose all the gain which they had in their activities.

The purpose of this article is to propose solutions to optimize
part of the business expenses: energy expenses.
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According to the economist, energy consumption increased
by +4.5 at the end of 2017, after + 1.9% at the end of 2016.
According to the same newspaper, an increase of + 7.9%
came from energy addressed to the national productive sector
and + 3% concerning low voltage energy addressed mainly to
households. In addition, the consumption of electricity went
from 12,453 GWH to 37,446 GWH from 1998 to 2018.
This increase reflects the dynamism of our country both
economically and socially. And therefore; other solutions are
needed to allow businesses to be more profitable.

Il. SOLAR ENERGY

Our kingdom is one of the sunny countries most of the year,
even in winter, something that cannot be found in the most
developed countries in Europe.
Moreover, the construction of several solar power plants in
the various regions of Morocco provides for the realization of
additional solar capacity for the years to come.

Furthermore, solar energy has become the choice of a
Moroccan population that can be considered important,
but we don’t see companies that opt for this solution to reduce
the electricity bill when their consumption far exceeds that of
houses.[2]

According to the economist: “The Noor Midelt | project,
awarded to the EDF Renouvelables, Masdar and Green of
Africa consortium, should enable Ma—-roc to move from 3rd
to 2nd place in the world CSP market This plant will have an
installed capacity of 800 MW, almost the equivalent of that of
a conventional nuclear  reactor (1,000 MW).
It will have to feed 1.19 million inhabitants and produce a
kwh at 0.68 DH. For the period 2019-2023, the equipment
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plan provides for the realization of an additional solar
capacity of 2,015 MW (120 Noor PV Tafilalt in 2019, 200
MW Noor PV Atlas in 2020, 200 MW in Koudia Baida in
2023, 300 MW to be carried out in 2023 under the law 13-
09)”[3]

I1l. BIOMASS

On the other hand, all the companies that have organic waste
can use this waste to proscribe energy, citing all the food,
cardboard and paper companies, mass distribution like
hypermarkets and supermarkets

Biomass, this energy source not yet exploited in Morocco,
and which can save the costs of the energy company by
exploiting its waste

2.1 definition of recycling

Waste recycling is the direct reintroduction of a waste into
the production cycle from which it comes, this means that the
waste is transformed into a raw material which will be used
to produce new consumer goods while avoiding to draw
resources from the planet.

These wastes can be used to produce energy, including
methanization,
this technology based on degradation by microorganisms of
organic matter, under controlled conditions and in the
absence of oxygen, this degradation causes:
e Digestate : a moist product, rich in partially
stabilized organic matter
e Biogaz: gas mixture saturated with water at the
outlet of the digester and composed of
approximately 50% to 70% methane (CH4), 20%to

IJOA ©2021

(1]

(2]
(3]

(4]

(5]

50% carbon dioxide (CO2) and some trace gases
(NH3, N2, H2S)

2.2 advantages of recycling

this anaerobic digestion produces a double valuation of
organic matter and energy, this is the specific interest in
anaerobic digestion, compared to other sectors,
decreases the amount of waste,
also allows a reduction in greenhouse gas emissions by
replacing the use of fossil fuels or chemical fertilizers
and can treat greasy or very wet organic waste. [4]

3.2 Agreed enterprise and biomass plant

The idea is to question the possibility that a business
could benefit from energy from its own waste; have an
agreement so that each company that gives its waste toa
biomass power plant benefits from energy according to
the weight of the waste [5]
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Abstract—In this paper, we study the existence of solutions for
the following fractional hybrid differential equations involving
Riemann-Liouville differential operators of order 1 < a < 2. An
existence theorem for fractional hybrid differential equations is
proved under mixed Lipschitz and Carathéodory conditions and
using the Dhage point fixe theorem.

Index Terms—Fractional, Riemann, Hybrid

I. INTRODUCTION

During the past decades, fractional differential equations
have attracted many authors [1], [4], [5], [7], [8], [9], [10],
[11]. The differential equations involving fractional derivatives
in time, compared with those of integer order in time, are
more realistic to describe many phenomena in nature (for
instance, to describe the memory and hereditary properties of
various materials and processes), the study of such equations
has become an object of extensive study during recent years.

The quadratic perturbations of nonlinear differential equa-
tions have attracted much attention. We call such fractional
hybrid differential equations. There have been many works o
n the theory of hybrid differential equations, and we refer the
readers to the articles [2], [3], [4], [5], [6], [7].

Dhage and Lakshmikantham [3] discussed the following
first order hybrid differential equation

d x(t)

— || =gt z(t e tedJ=|0,1

- [f(t,x(t))] glta(t) ae tes=[0,1]
I(to) = X,

where f € C'(J x R,R\{0}) and g € Car(J x R,R).

(Car(J xR,R) is called the Carathéodory class of functions).
They established the existence, uniqueness results and some

fundamental differential inequalities for hybrid differential

(D

equations initiating the study of theory of such systems and
proved utilizing the theory of inequalities, its existence of
extremal solutions and a comparaison results.

Zhao, Sun, Han and Li [11] have discussed the following
fractional hybrid differential equations involving Riemann-
Liouville differential operators

of Z) 7 B
R{W} =g(t,z(t)) ae teJ=10,T),

z(0)=0 ,

where f € C*(J x R,R\{0}) and g € Car(J x R,R) .

The authors of [11] established the existence theorem for
fractional hybrid differential equation and some fundamental
differential inequalities. They also established the existence of
extremal solutions.

Hilal and Kajouni [5] studied boundary fractional hybrid
differential equations involving Caputo differential operators
of order 0 < a <1

2

oM )0 ae _
C{f(t,x(t))] g(t,z(t) ae teJ=[0T], N
a z(0) x(T) e
£0,2(0))  f(T,x(T)

where f € C*(J xR, R\{0}) and g € Car(JxR,R) and a, b,
c are real constants with a+ b # 0. They proved the existence
result for boundary fractional hybrid differential equations
under mixed Lipschitz and Carathéodory conditions. Some
fundamental fractional differential inequalities are also estab-
lished which are utilized to prove the existence of extremal
solutions. Necessary tools are considered and the comparaison
principle is proved which will be useful for further study of
qualitative behavior of solutions.
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In this paper we consider the fractional hybrid differential
equations with involving Riemann -Liouville differential op-
erators of order 1 < a < 2

of 2 ] _
D [m] =gt Bat) ae 0<t<l
a(l) = 2'(1) =
where f € C(J x R,R\{0}), g € Car(J X R R)
The term Bz (t) is given by: Bx(t fo s)ds where

K € C(D,R"), the set of all posmve functlons Wthh are
continuous on D := {(¢,s) € R?/0 < s <t < T} and
¢
B* = / K(t,s)ds < oo Q)

sup
te[0,1]
Using the fixed point theorem, we give an existence theorem
of solutions for the boundary value problem of the above
nonlinear fractional differential equation under both Lipschitz
and Carathéodory conditions. We present two examples to
illustrate our results.

II. MOTIVATION & METHODOLOGY
A. Motivation
III. PRELIMINARIES

In this section, we introduce notations, definitions, and
preliminaries facts which are used throughout this paper.
By C(J,R) we denote the Banach space of all continuous
functions from J into R with the norm

1yl = sup{ly(t)],t € J}

We denote by Car(J x R,R) the class of functions g : J X
R — R such that
(7) the map t — g(t, z) is mesurable for each € R and
(#4) the map x —— g(¢,x) is is continuous for eache J.
The class Car(J x R,R) is called the Carathéodory class
of functions on J x R which are Lebesgue integrable when
bounded by a Lebesgue integrable function on J.

By L'(J,R) denote the space of Lebesgue integrable real-
valued functions on J endowed with the norm || . |1 defined

by
1
Iy = / | y(s) | ds.

Definition 3.1: [6]
The Riemann-Liouville fractional integral of the continuous
function A : (0,00) — R of order > 0 is defined by

L t — 5)* h(s)ds
i | =9 ke

Provided that the right side is pointwise defined on (0, c0)
Definition 3.2: [6]

The Riemann-Liouville fractional derivative of order o > 0 of

the continuous function % : (0,00) — R is given by

L d- tt n=a=lp(s)ds, (6
m%/o( ) (s)ds, (6)

I°h(t) =

oDRA(t) =

where n = [a] + 1, [«] denote the integer part of number «,
Provided that the right side is pointwise defined on (0, c0).
From the definition of the Riemann-Liouville derivative, we
can obtain the following statement

Lemma 3.1: [6]
Let o > 0 . If we assume = € C(0,1) N L(0,1), then the
fractional differential equation

has z(t) = cit* Lot 244 t® " €ERi=1,...,n
as unique solutions, where n is the smallest integer greater than
or equal to a.

Lemma 3.2: [6]
Assume z € C'(0,1) N L(0,1) with a fractional derivative of
o > 0 that belongs to C'(0,1) N L(0,1). Then

o+ Dora(t) =

forsomec; e R, 1 =1,2,...,

greater than or equal to a.
Lemma 3.3:

Let h € C[0,1] et 1 < o < 2. The unique solution of the

problem

{D“(f(t"’?é?(t))) h(t) ae 0<t<1 , )

o(t) + et F et b et

n where 7 is the smallest integer

is

1
o0) = 56 Bo0) [ Hoh)s . ®
0
where
(t—s)® T—t* T (1—g)*"1 | s(1—t)t*2(1—s5)* 2
I'() + T(a—1) ,0<
H(t,s) =
—t*1(1—s)2 ! s(1—t)t* "2 (1—s)> 2
I'() + T(a—1) ; >
9
Preuve::

Applying the Riemann-Liouville fractional integral of the
order o for the equation (7), we obtain

x(t)
f(t, Bx(t))

for some cq,co € R.
Consequently, the general solution of (7) is

2(t) = f(t,Bx(t))(ﬁ /0 (tfs)aflh(s)ds+clta*1+czta*2)
(10)

=T°R(t) + et 4 ept™™?

By z(1) = 0 then

1 /1 .
c1+cy=—— 1—8)*" "h(s)ds.
1 2 F(a) 0( ) ()
From (10) we get

() f (¢, Bx(t))
f2(t, Ba(t))

— x() fu(t, Bx(t))

1 t a—2 a—2 a—
m/o(t—S) h(s)ds+(a—1)cit* 2 +(a—2)cat™ ™ |
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by 2/(1) = 0 we have

1
ﬁ/@ (1 — 5)°2h(s)ds.
Then

o1 = mray Jo (1= )22 = (1= 5)°~)h(s)ds

(a=1)c1 + (@ —2)eq =

C2 = Ty S (1= 8)*"1 = (1 — 8)*2)h(s)ds—
ﬁ fol(l —5)*"h(s)ds

therefore

ot) = f(t,Bx(t))(ﬁ/o(t—s)a_lh(s)ds

1 ta—l o
+ /0 (F(a—l)((l_s) 1
a—1
- - (e
ta72 a—2 a—1
R TP R AR (R ))ls)ds)
— f(t,Bx(t))(/O/ (ﬁ(t—s)a_l
a—1
e RO e
o tail (1 _ S)afl
[(a)
AT S )77 h(s)ds
MR
= [ (Fampa-9m - -9
ta—l a1
- F(a)_(:_s)
4 ﬁ(a—s)a—t 1= 5)°)) h(s)ds)

- f(t,BI(t))(/Ot (“FZ)

s(1—)t*=2(1 — s5)*~
MNa-—1)

ta_l(l _ S)a—l
- W)h(s)ds

Lol — )t0=2(] — )22
+ /t((l t);(a_(ln !

- tal(;(;)s)al)h(s)ds)

N~

— f(t, Ba(t)) /0 H(t, s)h(s)ds |

The proof is complete. ]
Lemma 3.4:

The function H(t,s) defined by (9) satisfies the following

conditions

D(a—1)H(t,s) < qt)k(s) , (11

where q(t) = (1 —t)te=2

S)a72

IV. EXISTENCE RESULT

In this section, we prove the existence results for the hybrid
differential equations with fractional order (4) on the closed
and bounded interval J = [0, 1] under mixed Lipschitz and
Carathéodory conditions on the nonlinearities involved in it.
We defined the multiplication in X by (zy)(t) = z(t)y(t) for
z,y € X.

Clearly X = C(J,R) is a Banach algebra with respect to
above norm and multiplication in it.

Lemma 4.1: [2]

Let S be a non-empty, closed convex and bounded subset of
the Banach algebra X andlet A; : X — X and Ay : X —
X be two operators such that

(a) Aj is Lipschitzian with a Lipschitz constant L

(b) B is completely continuous,

©) z=A1zAyy=2€S forallye S, and

(d) LM <1, where M = ||A2(S)|| = sup{||A2(z)] : = €

S}

then the operator equation x = A;x Aoy has a solution in S
We make the following assumptions
(Hyp) The function  — —=*— is increasing in R almost
every where for t € J .

f(¢t,Bx)
(H1) There exists a constant L > 0 such that

| f(t, Bx) — f(t, By) |< LB*x —y| = L[z —y| ,

forall t € J and z,y € R with L* = LB*.

(Hz)  There exists a function h € L'(J,R™) such that
lg(t, Bz)| < B*h(t) ae teJ
forallz e R

For convenience we denote

1 1
T= m/o k(s)ds

Theorem 4.1: Assume that hypotheses (H;) and (Hs)
hold. Further, if

12)

L*B*T||h|1: <1, (13)

then the boundary value problem (4) has a solution define J.

Preuve::
We define a subset S of X by

S={ze X/llz| <N} ,
where

N = B*FoT||h|| s
=B L T|h|

et

Fy = sup|f(¢,0)]
teJ
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It is clear that S satisfies hypothesis of lemma 4.1.
By application of Lemma 4.1, the equation (4) is equivalent
to the nonlinear hybrid integral equation

1
z(t) = f(t,Bw(t))/ H(t,s)g(s, Bx(s))ds , tedJ
" (14)
Define two operators A; : X — X and A : S — X by
Aiz(t) = f(t, Bx(t)), teJ (15)
and .
Asx(t) = / H(t,s)g(s, Bx(s))ds (16)
0

Then the hybrid integral equation (14) is transformed into the
operator equation as

x(t) = A1x(t)Agz(t) , ted (17

We shall show that the operators A; and A, satisfy all the
conditions of Lemma 4.1.
Claim 1, Let 2,y € X then by hypothesis (H),

|Ava(t) — Avy(t)] = [ f (¢, Bx(t)) — f(t, By(t))]
< L7fa(t) — y(0)]
< Ll =yl

forall t € J .
Taking supremum over t, we obtain ¢

A1z — Ayl < L¥[lz =yl

forall z,y € X

Claim 2, A, is a continuous in S.

Let (x,,) be a sequence in .S converging to a point z € S .
and Lebesgue dominated convergence theorem, we have

lim H(t,s)g(s, Bxy(s))ds

lim AQ.’En (t)

n—oo n—0 Jg
= /01 H(t,s) nh_)rr;o g(s, Bz, (s))ds
= /1 H(t,s)g(s, Bx(s))ds
= Aoga:(t) ,
forall t € J.

This shows that As is a continuous operator on S.
Claim 3, A, is compact operator on S .
First, we show that As(S) is a uniformly bounded set in X.
Let z € S be arbitrary. By Lemma 3.4, we have
|Ag(t)]

| /O H{(t, 5)g(s, Bx(s))ds|

IN

q(t)ﬁB*/o k(s)h(s)ds
TB*||hlLr

IN

IJOA ©2021

forallt € J.
Takin to sup from ¢, we obtain

[Agz|| < TB*|[R]|r

for all z € S.

so As is uniformly bounded on S.

Next, we prove that A5(.S) is an equi-continuous set on X.
Given € > 0 and let

t1 < to s

1 T(a+ 1)

2" 12|k 1
Let x € S et t1,t2 € [0,1] with

to —t1 <6

We have

(5<min{

0 <

| As(t) — Aga(ty)] = ‘/0 H(ts, s)g(s, Ba(s))ds
—/0 H(tl,s)g(s,Bx(s))ds‘
/t2 (t2 _ S)O‘_l _ tg_l(l _ S)a—l
0 INE)

2 5(1 — tg)tg_Q(l —5)2
*/o Dla—1)

e

2

V(1 — o)ty 2(1 — s)22
+/t 2r(a Y

< B[l ds

ds

ds

ds

2

ds

. / (t = )" — 1771 (1 = )
0 ['(a)

/tl s(1—t)t¢ 21 —s)22
0

T(a—1) ds

1 ja—1 a—1
t 1-—
/ 1 ( s)
. IN())]

B /1 s(1— 1)ty (1 — s)*2
t1 [la—1)

ds

ds
then

| A (t2) — Agw(ty)

o ([

_ " (tl — S)a_l s a—1 _ jo—1 ! (1 — S)a_l
J A AR Y s

+(tgf2 _ t(1172) /0 (;(—as)al—)

1 — g2
+(t371 - tlllil)‘/o (;(O{—) 1)

| <

ds

ds

ds
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. $o o +ta_1 7150‘_1
< Bl (L
+t§‘_2 R t;*—l)
I'(a) I'(a)
B*||Al|z

5 — 1t 4+ (1 ot

~57Y) +alty ™ - 57

B||hl

ty —t¢
_I‘(a+1)(2 !

+3(57 - 5T + 257 - 157)).

In order to estimate t§ — t§ , t3 ' — ¢!  and
toz—2 _ ta—2

2 1 ’

we consider the following cases

Case 1: 0<t1 <6 , tp<26.

g — ¢ < oty < (2000 < 2% <49,

ty < < (26)2 <2075 < 26
1572 =0T <57 < (200472 <29 <6

Case 2: 0<t; <ty <.

tg — 19 <ty < 3% < ad < 496,
fo < (a—1)6 <20

1572 —tr<eT? <502 < (a—2)0 <0

—1 —1 —1
tt el < et <

Case 3: <t <ty <1
g — 19 < ad < 46, t5 =t < (@ —1)5 < 20
t572 02 < (@ —2)5 <6

we obtain
|A2I(t2) — A2£E(t1)| <e

for all ¢1,t3 € Jand all x € X .
This implies that A5(S) is an equi-continuous set in X.

Then by Arzela-Ascoli theorem, A, is a continuous and
compact operator on S.
Claim 4, The hypothesis (¢) of lemma 4.1 is satisfied.
Let x,y € X such that z = A;zAsy. Then
lz(t)] = [Aiz(t)]|A2y(?)]
1
bSOl [ Hs)g(s. Bos)ds
0
1
< B*[L*|z(t)| + Fo] (q(t)i k(s)h(s)ds)
Lla—=1) Jy
< BY[L*[z(t)| + Fo]T'[|h] L1
Thus,
B*FyT||h|| 2
)<
O < T B TRl

IJOA ©2021

Taking supremum over ¢,

B*EFyT| b L

— B*L*T ||k

Then z € S and the hypothesis (¢) of Lemma 4.1 is satisfied.

Finally, we have
M = ||A2(9)|| = sup{||A2z|| : € S} < B*T'||h| 1,
S0,

<
ol < <

L*M < L*B*T||h| 1 < 1

Thus, all the conditions of Lemma 4.1 are satisfied.
Hence the operator equation AyxAsx = x has a solution in
S. As a result, the boundary value problem (4) has a solution
defined on J. This completes the proof. [ ]
V. EXEMPLES

In this section, we will present two examples to illustrate
the main results.
A. Exemple 1

we consider the fractional hybrid differential equation

D%x(t) =sinz pp. 0<t<1l | (18)
z(1)=2'(1)=0
whetre  f(t,z)=1 , g(t,z) =sinxz and h(t)=1.
Then hypothesis (H;) and (Hz) hold.
Since
1 1
T = —/— k(s)d
r(a—1)/0 (s)ds
= 1/1 s(1— s)%ds
L(3) Jo
-~ 4
35y ]
choosing L = 1, then we have
LT Al < 1

Therefore, the fractional hybrid differential equation (18) has
a solution.

B. Exemple 2
we consider the fractional hybrid differential equation

2 @ | —

D> [sizxﬁ} =cosz pp. 0<t<1 (19)

z(1)=2'(1)=0
where  f(t,xz) = sinz +2 , g(t,z) = cosz et
h(t) = 1.
Then hypothesis (H;) and (Hs) hold.
Since

4
35/
choosing L =1, then
LT <1

Therefore, the fractional hybrid differential equation (19) has
a solution on [0, 1].
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Abstract—In this paper, we study the Cauchy problem of the
fractional drift-diffusion system. By using the Fourier localization
argument and the Littlewood Paley theory, we get the local well-
posedness for large 1n1tlal data in crltlcal Fourier-Besov-Morrey

—20+ 45 1 + 2— 2a+ +
space ]-'./\/ P XFN, ?, Moreover, if the initial

data is suf)ﬁaently small then the solutlon is global.
Index Terms—Drift-diffusion, Local existence, Littlewood-
Paley theory, Fourier-Besov-Morrey spaces.

I. INTRODUCTION
In this paper, we consider the following Cauchy problem for
the fractional drift-diffusion system in R x R* with fractional
Laplacian

o

v+ (—A)zv ==V - (vVe) in R™ x (0, 00),
Ow + (=A)3w =V - (wVe) in R x (0, c0),
Ap=v—w in R™ x (0, 00),
v(z,0) = vo(z), w(x,0)=we(z) inR",

where the unknown functions v = v(z,t) and w = w(z,t)
denote densities of the electron and the hole in electrolytes,
respectively, ¢ = ¢(x,t) denotes the electric potential, vo(x)
and wo () are initial datum. Throughout this paper, we assume
that n >2and 1 < a < 2.

Notice that the function ¢ is determined by the Poison equation
in the third equation of (1), and it’s given by:

$a,t) = (=A) " (w —v)(=,1).

So that the system (1) can be rewritten as the following system:

o+ (=A)2v ==V (vV(=A)"H(w —v))
w4+ (-A) 2w =V (wV(=A)"Hw—-v)) inR"x
v(z,0) =vo(x), w(z,0)=wo(x) in R™.

2

Mathematical analysis of the Drift-diffusion system has
drawn much attention during the past three decades, we
refer the reader to see [1], [5] and the references therein
for previous works on this system concerning existence of
classical solutions and weak solutions.

In the context of Besov spaces and for a = 2, Karch in [14]
proved existence of global solution of the system (1) with
small initial data in critical Besov space B, 2:7 (R™) with

o < p < n. After, Deng and Li [9] showed that the system

(1) is well-posed in B, 3 (R?), and ill-posed in B, , ( 2) for

IJOA ©2021

2 < r < o0o. Zhao, Liu, and Cui [21] established the existence
of global and local solution of the system (1) in critical Besov
space By, r+ (R™) with 1 < p<2nand 1 <r < oo.

We mention here that if w vanishes (w = 0) and for o = 2,
the system (1) becomes to the well-known Keller-Segel model
of chemotaxis:

v =Av—V-(vVep) inR" x (0, 00),
Ad = in R" x (0,00),  (3)
v(x,0) = vo(z), in R™.

In the paper [4] the local well-posedness of the system (3)
has been proved in the three-dimensional case. Iwabuchi and
Nakamura [12], [13] get the global well-posednes of (3) for
small initial data in the critical space

(1) )
Botw

(R")

with I < p < oo and 1 < r < oo Inspired by the work [21],
The purpose of this paper is to establish the existence of local
solution to (1) for large initial data and global solution for
small initial data in the critical Fourrier-Besov-Morrey space
2—2a+ 2% +2

x FN, v 4

2-2a+ %43
Aq

FN

p,

Let us firstly recall the scaling property of the systems:
if (v,w) solves (1) with initial data (vg,wp) (¢ can be deter-
mined by (v, w)), then (vy,w,) with (vy(z,t), w,(x,t)) =

in R™ x R{’yav (yx,y*t) ,v*w (yz,y*t)) is also a solution to (1) with
RJ,Ihe initial data

(v0,5(2), wo (7)) :=

(¢ can be determined by (v.,w.)).

Definition 1.1: A critical space for initial data of the system
(1) is any Banach space E C &’ (R™) whose norm is invariant
under the scaling (4) for all v > 0, i.e

[1(v0,5 (), wo, ()| 5 = | (vo(2), wo ()l g -

Under these icalings
2—2a+£+
FNyaq x FN,, 5

mark 2.1 for details).

(Y*vo(yx), v wo(yz))  (4)

We can show that the space pair
2—2a+3; L+ ...
? is critical for (1) see (Re-
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In order to solve the equation (1), we consider the following
equivalent integral system

t (o7
v(t) =e = AP@ - /0 e~ IR gL (0 (7)) dr

o t o
w(t) =e 1A wy + / e DR L (wVe(r)) dr
’ 5)
With 7 ((=A)% f) (€) = [§]*Ff(£)-

Throughout this paper, we use ]-'./\/' to denote the
homogenous Fourier Besov-Morrey spaces (v,w) e X to
denote (v,w) € X x X for a Banach space X
X x X will be endowed with the usual norm ||(v, w)||xxx :=
[ollx +[lwllx ) [[(v, w)[|x to denote [|(v, w)|[xxx, VS W
means that there exists a constant C' > 0 such that V' < CW,
and p’ is the conjugate of p satisfying 1% + }% = 1 for
1<p< oo

Now we present our main results as follows.

Theorem 1.1: Let n > 2, 1 < a < 2,

o max{n—(n+3—2a)p,0}<)\<n

a—1
[ ]7 (’U07w0)€]:'/\/'2 2a+ +

the product

po >
1 <p<oo,

1 1 _
and PO+P6_1'

Then there exists 7" > 0 such that the system (1) has a
unique local solution
(v,w) € X, where

2204 %4242 /
Xp = gm0 (o T\ FN, +’°’+”+"0)mspo (0 T.FN. ..

and

2— 2oc+ + +
(v,w)eC(OT]:./\/ )
Besides, there exixts K > 0 such that if (vg,wq) satisfies:
l(vo,wo)ll 5 5ayn,» < K, then the above assertion holds

P,A.q
for T' = oc; i.e, the solution (v, w) is global.

II. PRELIMINARIES

In this section, we give some notations and recall basic
properties about Fourier-Besov-Morrey spaces that will be
used throughout the paper.

The Fourier-Besov-Morrey spaces were introduced in [10] are
constructed via a type of localization on Morrey spaces.

We define the function spaces M;‘.

Definition 2.1: [15] Let 1 < p < oo and 0 < A < n. The
homogeneous Morrey space sz‘ is the set of all functions
f € LP (B (xo,r)) such that
(6)

||fH1W = sup 5upr » ||f||LP (B(zo,r)) < OO,
zo€ER™ r>0
where B (g, r) is the open ball in R™ centered at z( and with
radius r > 0.
The space M;‘ endowed with the norm [[f|[\y is a Banach
space.
When p = 1, the L' -norm in (6) is understood as the total
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variation of the measure f on B (zo,7) and M, A as a subspace
of Radon measures. When A = 0, we have M), o _ = LP.

The proofs of the results presented in this paper are based
on a dyadic partition of unity in the Fourier variables, the
so-called, homogeneous Littlewood-Paley decomposition. We
recall briefly this construction below. For more detail, we refer
the reader to [2].

Let f € S’ (R™). Define the Fourier transform as

fOo=Fre=en [ e
and its inverse Fourier transform as
Fo) =7 @) = 2n)F [ (e

Let ¢ € S (R?) be such that 0 < ¢ < 1 and supp(p) C
{€eR:3<|¢] <8} and

> p(277¢) =1, forall &#0.
JEL
We denote
0i(€) = ¢ (279€), ()= D ¢r(®)
k<j—1
and
h(z) = Flo(x), g(z) = F ().
N +g +n% present some frequency localization operators:
) f:2dj/ h(27y) fz —y)dy
Rd
and
§if= S Anf=u;(D)f =29 /R 9 (27y) fl - y)dy.

k<j—1
From the definition, one easily derives that
AjApf =0,
A; (Sk—lfAkf) =0
The following Bony paraproduct decomposition will be
applied throughout the paper.

if [j— k[ >2
if [j— k| > 5.

wv = Tyv 4 Tou + R(u,v)

where Ty = dez S; ulju,  R(u,v) = Yjez Ajuljuv,
Z\] \<1 3’V
Lemma 2] [10] Let 1 < p1,p2,p3 < o0 and 0 <

)\1, /\2, )\3 <n.

. . CON . 1 1 1 A3 A A
(1) (Holder’s inequality) Let 55 = pr + > and p—g’ = pi + pj
then we have

179l < 1 lygss ol ™
(i) (Young’s inequality) If ¢ € L' and g € M3, then
le*gllyas < llellzellgllyp (8)

where * denotes the standard convolution operator.
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Now, we recall the Bernstein type lemma in Fourier vari-
ables in Morrey spaces.

Lemma 2.2: [10] Let 1 < ¢ < p < 00,0 < )\1,)\2 <
n, "‘Tj\l < "‘T’\"‘ and let v be a multi-index. If supp(f) C
{|¢] < A27}, then there is a constant C' > 0 independent of
f and j such that

-~ n—>A ~

1GE) Fllypa < T Ny O

Then, we define the function spaces fN A q(R”), see [10].
Definition 2.2:

spaces )

Let 1 < p,qg < 00,0 < XA < nand s € R. The Fourier-

Besov-Morrey space ]-"/\/' s is defined as the set of all

distributions f € S'\P, ’P 1s ‘the set of all polynomials, such

that gpjf € Mp, for all j € Z, and

(Homogeneous Fourler-Besov-Morrey

jsq
def (ZJ 72

1l &
supJGZQ Hgo]fH for q=oc.
(10)

Note that the space FN , ,(R™) equipped with the
norm (10) is a Banach space Since Mg = LP, we
have .7-'./\[ 0g = By, ,FN?,, = FBj, = B and
FN, 0 1= X! where B; is the Fourier-Herz space and x !
is the Lei-Lin space [18].

o A
Remark 2.1: The space pair ]-'/\/2 2actyrty X
2-2a+ 242

pr Ag P’ P is critical for (1). For this,
set up (&) = 72*20‘1;0(7{) then its Fourier transform is
@(5)2’72 2e=ngy, (W 5)
Let

71(6) & o (279%tom om0 a5 )
(v

2—2a—n

= (2_j+[10g2 v]—log, 'Yg) y BT
By change of variable, we get

Hfj”M;
(e,

_ 2—2a—n
=

© (2*j+[10g2 7]-log, vg) i
2—2a—n 2
sup supr »

zo€ER™ >0

=
ng (2 Jj+ Ing'Y]’Y —1 ) —15 ‘

Lr(B(zo,r))

gofH )1 for q <o

which implies

{27253 £5(6) 1 Hiie

2—2a+2 —2) 4lo 2q—2— 2 4 A —~
= {22t TR RO o e @ (©) s

R luoll  osarm -2
p’ P

IR

and since

0i( Oty (&) = > @i (©)ful8),
lk—jl<2
we can get
HUO,’YH 2—2a+ﬁ7% ~ ||U0|| 2—2a+ﬁ+% .

PiA,q p.A,q

Similary, we have

||w07’YH 2—2a+;—3+% ~ ||’LUOH

JIRNY

2 A .
272(y+;—5+;
P,A.q

Now, we give the definition of the mixed space-time spaces.

Definition 2.3: Let s e R, 1 <p<oo, 1 <q,p<Loo, 0L
A<mn,and I =[0,T), T € (0,00]. The space-time norm is
defined on u(t,x) by

L 1/q
bt ) eoir s,y = { D02 WAL raryy }
JEL
and denote by L°(I,FN,,,) the set of distributions in
S'(R x R™)/P with finite ||-HEP(I,JTN; ,.,) orm.
According to Minkowski inequality, it is easy to verify that
Le (I;‘FN;A,q) = LF (I’ 'FN;,M) )
Lr (L‘FN;)\,q) — L7 (I; ‘FNI‘)Sa)Vq) )

qu) =

if p<g,
if p > g,

where lu(t, )|z (I; FN,

1/p
(J alr My dr)

At the end of 'this” section we recall an existence and
uniqueness result for an abstract operator equation in a Banach
space, which will be used to prove Theorem 1.1 in the sequel.
For the proof, we refer the reader to see [17] and [3].

Lemma 2.3: Let X be a Banach space with norm ||.|| x and
B: X x X — X be a bounded bilinear operator satisfying

1B(u, v)||lx < nlfullxlv]lx

for all u,v € X and a constant 77 > 0. Then, if 0 < € < ﬁ and
if y € X such that ||ly||x < e, the equation z := y + B(z, z)

_ 7272047717%7% sup sup (77174)—% has a solution T in X such that ||Z|x < 2e. This solut%on
zoER™ >0 is the only one in the ball B(0,2¢). Moreover, the solution
H(p (2_j+[10g27 ) ‘ depends continuously on y in the sense: if ||| x < ¢, ' =
LP(B(y~'zo,v~17)) y + B(a',2'), and ||2’||x < 2e, then
_ 2(272a+ﬁ,*7 log, v H (2 j+[logs 7] )uO H HfiI/” - 1 H B /”
X=7C 4en) Yy—ylx-
IJOA ©2021 30

IJOA ©2021



International Journal on Optimization and Applications
IJOA. Vol. 1, Issue No. 2, Year 2021, www.usms.ac.ma/ijoa A
Copyright ©2021 by International Journal on Optimization and Applications

ITI. LINEAR ESTIMATES IN FOURIER-BESOV-MORREY for all f c I ]:N2 2ot it itig ) N
SPACES
, 220424242
. . . . . . . 0
In this section, we will establish some crucial estimates in Lo (I FN, A )
the proof of Theorem 1.1. We now consider the following —at A2
linear estimates for the fractional heat semigroup {e’}, . and g € £ (I F. N P ) N

Lemma 3.1: Let 1=(0, T), s € R, p,q, p € [1,00] and 0 2atBiAp2
< A <n. There exists a constant C' > 0 such that gro (I ]:N A >
Proof Applying Bony paraproduct decomposition and quasi-
) < Clluollza BN Y orthogonality property for Littlewood-Paley decomposition,
for fixed j, we obtain

et =%

ug |
([o )N R

where ug € ‘FN;,)\,q
proof Since suppp; C {£ € R™ : 2971 < [¢] < 27F1} we

obtain
H]_—{ o t= A)2UO]H _ H(p e t\&\“AH Aj(fVg) = Z Aj(Sk_1fALVg) + Z Aj(Sk-19A,V f)
M ‘ M) |k—j|<4 [k—j|<4
<™ pyioll + Y Aj(ArfALVY)
k>j—3

Then, by the Minkowski inequality, we have

=L+ +1I
e

s+
eo(rrn, )

1

IN

T a(j—1)
0 ’ Then, by the triangle inequalities in M]DA and in [9(Z), we have

Iz
i(s+< 1-— 6_Tp2(j71>a ? ~
< 29(s+5) (/)204(31) ||S0ju0||M;¢

< Clluollza,

YAl

. n < < n
||v (fVQ) ||£1 <I; N272a+m+%> = ||fvg||£1 (1; 3—2a+a+%)

PA,q PN, q

Lemma 3.2: [8] Let 1=(0, T),s € R, p,q, p €[1,00] 0

<A<n and 1<7r<p. < 9i(3—20+ 245 )qA v H
There exists a constant C' > 0 such that - {Z 14, (f g)HLl(I’Mﬁ)}

JEZL
t
j(3—2a+2+2)q 1 <
’/ IR f(7)dr Clfl, e <{>_2 N g b
0 cn(sz > LEN, " ) jEZ
(3—2a4 2 42 5 1
2O, ) aay b
IV. BILINEAR ESTIMATES IN FOURIER-BESOV-MORREY ez !

SPACES

Q=

[(3—2a4+ 2 42 3
Y PO, )
Lemma 4.1: Let I = (0,T), s € R, p, q € [1,x)], JET
o

max{n — (n + 3 — 2a)p,0} < A < n, py > 1 and =+ o+ J;
o
p% + i = 1. There exists a constant C' > 0 such that

va.g —2a4 1 4 A SC f a4y AL 2
Iv-( ) ”21 (I;J-‘Nj,jq +P’+£) | ngo (I;fNj’:quPﬁP{B‘;? Rusing the Young’s inequality in Morrey spaces and
Berfistein-type inequality with |y| = 0, we have

><||g|| 2 a+”+ +2
£°0 (I]:N/\q )

+||gH 2matnpAry 2 X ”fH 2-2a+8 A4 2 ‘|
3 . P/t p P p/ " p ! N i N
£ro (Iy-FNp,A,q O> £°0 (I prAq pO) H(pijLl Scz.?(y"rg) ’(p]f
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Then

I3z € 30 WG AV

|k—jl<4

< Z ||SO]VgHLP6(I,Mp>‘) Z ||gplf||Lp0(I,L1)

|k—j|<4 1<k—2

<C Z Qk”@ka”LPB(I’Ap\)
|k—jl<4 !

ST
Z 2+ ) H<Plf||Lﬂo(I,M;)

I<k—-2

< C Z 216”@]9”[/1% I]\/I*)
[k—jl<4

Z 9 (2204 2+ 2+ 2)1
1<k—2

o(20—2— )1

H<P1f||Lﬂo(I,M,*)

<C|fl

2 2045+ 5 Ao
£ro (I,F.

PO
p%q )

1
1(2a—2—2)q"\ ~
Z 2k< Z 2! ,,0)11) ”SDkgHL”f)(I,M};\)
|k—j|<4 1<k—2

<C| £l
£ro (1,F.

22 n o
/’0)
pkq

k(2 1—
> 2heer m>||sokg||m(,w),
|k—jl<4

in the last

where we have used the fact that py > a
o —

inequality.

Thus, by using the Young inequality, we have

S < CIIf|

2-2a4 1 p Ay
£ro (ILFN S

PyA,q )

OREESS
< |k—j|<4

1
k(2a—1-2¢ g9 )
ok(2a po)H¢k9H1f6<Lﬂ43)) )«

< CHf” 272a+ﬁ+%+%

L0 (ILFN, |, )
(>

E: 9(i—k)(=1+25+%)a
JEL  |k—j|<4

Q=

k(2+f+o— g
o2+ 543 PO)H(PkgHLPé(I,M,’,\))q)

2204 %4 A4 o gl
A )

<C|Ifl

2—at AL a
£r0(I,FN, L

’
SO (ILFN, 5, )
where we have used pi pi, =1.
0]
Similary, we get

Jo < Cllgl

2a+ ++&||f” y 22042 ++“
L20(LFN x4 L (I,FN, | )

For Js, first we use the Young inequality in Morrey spaces,
the Bernstein inequality (|]y| = 0) together with the Holder

inequality, to get

—

I3 2, amp) < E: H(AkakVQWLWLm@)
k>j—3
= Z ||(Akf*AkV9)||L1(1,wfg)
k>j—3
< Y leefligam X leValmaon
E>j—3 P —k<1
<C Z ||90kf||L/’0 I,M}) Z 22l( 7 )”SDlg”LPO(IMA)
k>j—3 ll—k|<1
1
n Ha—1—2)g") @
<C 2: HwkaYMLAP)( E: 2!t p&q)q
k>j—3 " =kl
g a4+ g AL a
HHSWUJWiX;W+p+m)
SOHQH z a+~,+ Ay 2
Lo (IL,FN, 5 4 P01y
k(a—1—= n
> 2T okl ot g ary)
k>j—3

Then, applying the Holder inequality for series, and noticing
that A > n — (n+3 — 2a)p implies that 3 — 2+ 2L + 2 > 0
, We obtain

J < C —at+ 4+ A o
3 ”g”mo(L}‘N;A,:p/+;+’J0)

(Z 2j(3—2a+§+%)q( Z
JEZ k>j5—3
1

%)||30kf||Lp6(1,Mg))q> “

< C —at+ 4+ A o
= Hg”):PO(L}‘N;A,:”, R )

(Z( Z 2(j7k)(372a+%+%)

JEZ k>j—3

2/@(04—1—

Q=

kE(2—a+B 242 2 q
2( AT T PO)||(‘0kf||L/’6(1,MI§‘)))
SC g et AL o

lgll B aTie

||f|| , 72+ - +L 222(3 2a+p,+ )
EPO(I’}-NP X,q ) i<3
< Cllgl miris I eras
£ro(I,F. i,x,:?+p+p0) 2"0(1 ]-"./\/2 2 +7+ +5 0)

Thus, we finished the proof of Lemma 4.1.

V. PROOF OF THEOREM 1.1

To ensure the existence of the global and local solution of
the system (1), we will use Lemma 2.3 with the linear and

bilinear estimate that we have established in section 3 and 4.
Let pg > —— be any given real number and 1 pi, =1
8]

o —
- Note that the space X defined in Theorem 1. 1 is a Banach
space equipped with the norm

fuller =l sy Hlel

’ PX.q

LPO(IFN,
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We first prove global existence for small initial data. For
this purpose we choose T' = oo.

Applying Lemma 3.2 with s = 2 — 2« + + 2 and p; =1,
and Lemma 4.1, we obtain

Set

B (v,w) == —/0 e_(t_T)(_A)%V~(UV(—A)_1(w —)) (1)dr,

(0V(=A)Hw —v)) (1)dr]| <
£r0

SV (wV(=2)" (w —v)) H (

2204 A o

7T
Ooo]:./\/pxq

t (o3
.y / - (t-)(-2)%
0

ool

220t b St
Ooo]:./\fpxq

)
')
. M#%)
)
)

t (o3
By(v, w) := / e~ A2 G (wV (—A) " Hw — v)) (7)dr, 0,00 FN.
0
S ||U|| ( 2-204 B4 A o
£°0 [ 0,00 pAg pro P PO
Then the equivalent integral system (1.2) can be rewritten as x|[(=A) 1( w— )| R
£°0 (0 003 FN, A 4 R
(0(t), w(t)) = (e g, e A wg) (B, (v,w), Ba(v,w))

(13) +||(—A)_1(’LU _U)H 2 Q+Q+A+g
2«‘)0(000]:./\/“))\(1 P pO)
According to Lemma 3.1 with s = 2—2a+2 +2 [ = [0, o0)
4 i P b XHU” 2204 245 +&
and p = po (or pp), we obtain (0 N 6)
—t(-a)% S v o
||€ t(—A) 2UOH R 2a+ +A o S || H 0,00,F z>\2a+ S+ 5 +§>
£r0 <0,oc;]-'./\/p>\q pU) Npxsa
x||Jw — | N o
Co [lvol| 2-20+ 2% 42 I | (000?,/\/’2 20+ 1 +p+%>
PiA,q
+H’LU 7UH 2 20+ 2 o +p&
and £r0 (o i FN, 3,
a X”U” 2— 2a+ L+ +%
—t(=4)2 ]
||€ t( A2U0|| 22at 5434 (Ooo]—'f\/ >
£°0 <000]:/\/ 0)
= Cg(H(v,w 2204 24242
S C10 ||’U()|| 272a+pﬂ,+% ) £ro (O OOJ:Np X, q )
P,A,q
XH(Uﬂ,U)H / 22042 +A+p&/ )
0
which implies L7 (0 00, F N A >
o < C3||(v,w)||§<m
le™" = || x., < 2Co [|vol|

2-2a+ 0 42
a+p,+p
PiX.q

Similary,

le™ =2 wollx.. <201 [lwoll  soseinia

Analogously, we get

[1B1 (v, w) ||

" 2-2a+ 2L+ 2 +“ SC3H(’U’IU)H§(OO
(Ooo]:/\/ )

Thus, we obtain

1B1(v, w)x.. < 2Cs]l(v, )%,

P,\.q
Thus Similary,
|Ba(v,w)|[x.. < 2C4|(v,w)[%.
et g D E g < Finally,
C2 ||(U0,U)0)H 2—2@4»%4»% (14)

PiA,q
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By Lemma 2.3, we know that if
[(e7t =2 2 ng, e =2 2 wg)||x.. < e with e = &,
then the system (1) has a unique global solution in

B(0,2¢) = {z € Xo |zlx. < 2} . To prove
(e~ =22 yg, e =22 )| x.. < &, according to (14) we
have

[N)

”(eft(fm%%? e—t(=D)

Cs || (vo, wo) ||

wo)[[xo <

2—20&»%4»%
A, q
So, if ||(vo, wo)||

2204812 < K with K = then

4CC ’

PiA.q
(1) has a unique global solution (v, w) € X, satisfying

I, w0l < o
v, W —

X =50

For the local existence, we shall decompose the initial data v
into two terms

vo =F " (xB.s)00) + F (XBe0.8)D0) = vo,1 + vo2,

where § = d(vg) > 0 is a real number. Similary, we
decompose wy

wo = F ! (xs0.6%0) + F " (XBe0.s)Wo) = wo +wos.

Since

22042 +2
UQQ—)OIH.FN)\(I P

2—2a+ 2 +
wog—)OIHfNAq v

when § — 400,

when 0 — 400,

then, there exists § large enough such that

IN
ESTRR

C2||(UO.,2;w0,2)|| 22042 42
P P

IR

We get

(e et o) <
Xr

!
Xr

| ™

We have

—t(—A)T —t(—A)T
(7 o, e 0 won) | =

00)

Xr
o (3
—t(—A)2 —t(—A)2
H(e ( )1}071,6 ( )w0,1>‘ 2-2a4 8 4 Ay o
Lro(LFN, , 7 7

e e )

2 2a+ %+p%
£P0(1, FN,, o)

Using the fact that |£| ~ 27 for all j € Z, we have

(3 o
—t(—A)2 —t(—A)z2
H(e (=2) 0,1, € (=2) w(],l)‘

22Q+n+ +a

Leo(I,FN o)
_ J2-20t 5434 2)qy O AF g La
- {22 e fpjemt =) UUJ”LPO(I,MQ)}
JEL
+{Z:2j(272o£+ﬁ+%+%)q||90j€7t(7A)2’wo 1||LPO(I M)
jeL

PRSI o 1/q
{ 21( oty )13 G5 o €|y g oa>vo||Lﬁo<1M*)}

JEZ
§ g2k S agi () e . i
+ z 0| [€] XB(o,a)UJoHLpo(z,w
162
2-2
<0 (D il )
JEZ
) 1/q
J(2—2a+2+2)q s a
+{>2 Al 2R T
JEZ
at - 1
< C567 P Tvo ||(U0>w0)H 2-204 243
PiA.q
Thus
o o
—t(-A)% —t(-A)%
H(e (=4) V0,1, € =2) wO,l)’ 220+ T4 5 4 <
LoO(ILFN, ., F L0

o 1
C55a+p°Tp0 [ (vo, wo) || 2-2at 4o

PX.q

Similary,

(o3
—t(—A)2
(2% w0,

IN

eft(fAﬁwo,J

2—2a+ /+ +;*
LP0 (I]-‘/\/ o)

a+-5
Cs0 AT ||(U0»wo)\|

2204 B 42
a+P,+p

PA,q
Hence,
H(e_t(_A)EUO,h€_t(_A)5w071)HX =
T
at+ & 1
Cs6“" 70 Tv0 H(’UQ,wo)H 2_2‘“',%'*'%
PiA,q
4+ 1
+C5 6T %o Il (vo, wo) |l 2204243

PiX,q

Then, if we choose T small enough such that

a 1
055a+p0 T o H(’Uo,’wo)” 2—2a+ﬁ+% S %
PX.q
and
a+ -2 1
Cs6 70T | (vo, wo)| 2204 B 43 < %

PiX.q
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ie,
Po
T S a+& :
4C56% " %0 || (vo, wo) | 2204+ 42
PA.q
and
P
T< e
4C50 7o ||(vo, wo)| 2204 243
PX.q
So, if we choose
P
T < min (( o < 0’
4C50" " 70 || (vo, wo) || 2204 543
P,X.q
( I3 )Po)
a+-F
4056 7o H(U07w0)” 272u+ﬁ+%
PN,q
then
o o 6
(et t) <5
T
This result with (5.2) yields that
H (eft(fA)%v e—t(fA)%wO>‘ <e
Xr
2-2
Thus for any arbitrary (vg, wp) € .7:/\/ A anr A , (1) has a
unique local solution in B(0,2¢) = {x c Xr 1]l xp <

2} .
Regularity:
We know if (v,
we can show that

w) € Xp x Xp is a solution of (1), then

V- (0Ve), V- (wVe) € £l <0 T FN 2 >

By using the definition of the Fourier-Besov-Morrey spaces,
we have

lv (t1) = v ()]
.

2—2044»%4»%

PyA,q
n q
< > (PEEEEED 65 (1) - 05 (t2) gy )
J<N
((2—2q4- 1 LAY o q
+2Z (21(2 2a+55+3) ””j(t)”Loc(I,M;)) ,
i>N

where U; = ;0. For any small constant ¢ > 0, let IV be large
enough such that

i(2—2a4+1 4 A ~ €
> PO o 0ll L fa) < 7
J>N v

According to Taylor’s formula and using the same arguments
s [ [21], Proposition 2.3], we get

. n q
3 (23(272a+y+i) 95 (1) — ©; (t2)||M;)

J<N
i(2—20+ 242
S [t —t2f? ZZJ( D (9u )J LY (1M
J<N ( )
S [ty — t2]? x || Opul|? 2otat 2yl
o1 (O,T;J: pAg

S 1t = taf? x (J|Av] (
£ 0,T;FN,

V- @Ve)|*
“(

IR

n A
2— 2u+ +p)

219 +n+>\
0.T:FN, )

P,A.q

i FN

< It = ol (Jloll’ i
o1 (O,T- pa p)
IV - @V aray )
ot <OT.7-'N v P>

PN, q

< |ty — 2|9 x (Hvo||q NI

PX,q

q
21V Vo’ <0Tmz ) ).

P,A.q

Thus, we obtain the continuity of v in time ¢.
Similary, we use the same discusion to get the continuity of
w in time t.

2—2a+ 242

Hence (v,w) € C (0 Ty FN, g 7 > and we are done.
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Abstract— This paper is mainly concerned with existence of
mild solution for a neutral functionnal integrodiferential inclusion
with finit delay. The results are bobtained by using a fixed point
theoreme for condensing multivalued maps.

Index Terms—integrodifferentional inclusion, Selection, Fixed
point theory, neutral functional differential and integrodifferen-
tial inclusion, convex multivalued map.

I. INTRODUCTION:

In this paper we prove the existence of mild solution,
for a neutral functional integrodifferentional inclusion with
finite delay. In section 2 we will recall briefly some basic
definitions and preliminary facts which will be used in the
following section. Section 3 deals with the existence of mild
solution for a neutral functional integrodifferentional inclusion
with finite delay of the forme :

i]—"(t,ut) € AF(t,u) + /t B(t — s)F(s,us)ds
0

di
Gt ug) for te0,b) M
ug = () for 6¢€ Jy=][-r0],

where (A,D(A)) is the infinitesimal generator of a
compact resolvant operator R(t), ¢ > 0, in Banach space
X, for t > 0 B(t) is a closed linear operator with domain
D(B), such that D(A) C D(B). G : J x C(Jo, X) — 2%

(Jo = [, 0]), is a bounded, closed, convex, multivalued map
and X a real Banach space.
For any continus function u defined on J; = [—7,b], and

any t € J, we denot by u, the element of C(Jy, X) defined
by:

w(0) = u(t +60) = p(0),

Here u4(.) represents the history of the state from time ¢t —r,
up to the present time ¢, and F : J x C(Jy, X) — X defined
by :

F(t,p) = (0) = F(t, ) = u(t) — F(t, u),
J XC(J(),X),

Where F': J x C(Jp, X) — X.
Wen B = 0 we refer to the paper of K.HILAL and K.EZZINBI
[1] and the paper of K.EZZINBI and X.FU [2].
This paper is motivated by the recents results of [1] and
BENCHOHRA [3]. Here we compose the above results and

0 e Jo = [—T’, O],

Y(t,p) €

prove the existence of mild solution for our probleme (1),
relying on a fixed point theorem for condensing maps due to
Martelli [4].

II. PRELIMINARIES:

In this section, we introduce some basic definitions,
notations, and lemmas that are used throughout this paper.

C(J, X) is the Banach space of continuous functions from
J into X with the norm :

[ufloo == sup{lu(t)];¢ € J}

A measurable function u : J — X is Bochner integrable
if and only if |u| is Lebesgue integrable (For properties of the
Bochner integral see Yosida [5]).

LY(J,X) denotes the Banach space of continuous functions
u : J — X which are Bochner integrable normed by :

T
lul|pr := / lu(t)|dt for all u € L*(J, X)
0

Lemma 2.1: :
Let (X, ].]|) be a Banach space. A multivalued map G :
X — 2% is convex closed, if G(z) is convex closed, for
all z € X; and G is bounded on bounded sets, if G(B) =
xLeJBG(a:) is bounded in X, for any bounded set B of X.

Theorem 2.1: :

G 1is said to be completely continuous if G(B) is rela-

tively compact, for every bounded subset B C X.
Theorem 2.2: :

G is called upper semi-continuous (u.s.c) on X, if for
each z € X, the set G(z) is a nonempty, closed subset of X,
and if for each open set B of X containing G(z), there exists
an open neighborhood V' of x such that G(V') € B.

Lemma 2.2: :

If the multivalued map G is completely continuous with

nonempty compact values, then G is u.s.c. if and only if G has

a closed graph

yeG@D.
Definition 2.1: :
an upper semi-continuous multivalued map G : X —
X is said to be condensing if for any subset B C X with
a(B) # 0, we have a(G(B)) < a(B) , where a denotes the
Kuratowski measure of noncompactness [6].
Lemma 2.3: :

ie z, — T,Yn — Y;yn € G(z,) imply
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A completely continuous multivalued map is a condens-
ing map
Theorem 2.3: :(Arzela—Ascoli’s theorem)
Let K be a compact space and (F,d) a metric space.
A C C(K, E) is relatively compact (i.e. included in a compact)
if and only if, for any x of K:

e A is equicontinuous in z, i.e. for everything € > 0, there
exist a neighborhood V' of x such that : Vf € A, Vy €
Vod(f(z), fly) <e

e The set A(z) = {f(x); f € A} is relatively compact.

In the following BCC(X') denotes the set of all nonempty
bounded, closed and convex subsets of X
Theorem 2.4: :(Leray-schauder’s fixed point)
Let X be a Banach space and N : X — BCC(X) an
u.s.c condensing map. If the set :
Q:={ueX:ueNu for
is bounded, then N has a fixed point.

Definition 2.2: :(Finite delay differential equation)

Let 7 > 0; and C, = C([-r,
of continuous functions,
o : [-r,0] — R™ with ||¢]le =

A> 1}

sup ||p(6)]]. We denot
€[—r,0
by u; element of C, defined by :
ut(a):u(t+9):¢(9)7 QGJOZ[*T’,O],
Let f : RT x C. — R, a general form of the finit-delay
differential equation is :

Doty = f(t,u0)
Definition 2.3: :(Resolvent operator [2] )
A family of bounded linear operators R(t) € B(X),
(B (X) is the Banach space of all linear bounded operator
from X into X ) for t € J is called a resolvent operator for :

——Au /ft—s t)ds
If:

1- R(0) = I, the identity operator on X, and ||R(t)|| < M
with M > 1.
2- For all v € X; R(t)u is continuous for ¢t € .J

3- R(t) € B(Y); t € J; where Y is the Banach space (H6)-

formed from D(A), for y € Y,R(.)y € C'(J, X) N
C(J,Y) and :

R (t)yy = AR(t)y + / F(t— $)R(s)yds =

R(t)Ay + / R(t — s)f(s)yds.

0
ITII. EXISTANCE RESULTS :

In order to define the concept of mild solution for (1),
by comparaison with the evolution problem

% = Av(t) + /0 flt=s)®)ds+h(t) ; v(0)=a

We asssociate (1) to the integral equation :

u(t) = R(t)F(0, @)+ F(t, ut) +/0 R(t—s)g(s)ds te
[0, 0]

(HI)-

(H2)-
0], R™), the Banach space (H3)-

(H4)- G : J x C(Jo,

(H5)-

Where g € S, , = {g € L'(J, X) : te
J}
Definition 3.1: :
A function u € C([—r,
(1) if :
1- u(0) = p(0); 6¢€][-r0].
2- There exist a function g € S, , such that :

u(t) =
R(t)F(0, @)+ F(t, ut)—i—/ R(t—s)g(s)ds
Where, F(0, ¢) = ¢(6) — Ig(t, )
Assume that :
A is the infinitesimal generator of a compact resolvent
operator R(t) in X such that :

|IR(®)|| < My for My >1 5 teld
There exists constants 0 < ¢; < 1 and ¢o > 0 such that :

|F(t,u)| §01||UH+62; telJ UEC(J(),X)
¢ € C([-r,0],X) is completely continuous and there
exists a constant M5 such that:

lell < M

X) — BCC(X) 5 (t,u) — G(t,u)
is measurable with respect to ¢ for each u € C(Jy, X),
u.s.c with respect to u for each ¢ € J; and for each fixed
u € C(Jo, X) the set :

S..={9€L'(JX):
is nonempty.
G u)|| = supflgl : g € G(t,u)} < p)¥(||ul]) for
all t € J and all u € C(Jy, X), where p € L*(J,RY)
and ¥ : Rt — [0, +00) is continuous and increasing

b, X) is called a mild solution of

t € [0,b]

some

g(t) € G(t,uy); teJ}

with : ,
> dr
/0 w(s)ds</C 77—&—\1!(7)
Where
c= = (M2(1—|—01)+02) +co} and w(s) =
e

The function F' is completly continuous and for any
bounded set B C C(J1,X) the set {t — F(t,us) :
u € B} is equicontinuous in C.
The following lemma is crucial in the proof of our
existence results.

Lemma 3.1: :

Let I be a compact real interval and X be a Banach
space. Let G be a multivalued map satisfying (H4). And let
I be a linear continuous mapping from L' (I, X) to C(J, X).
Then the operator :

FoS, :C(I,X)— BCC(C(I,X));
(FoS,)(u) =T(S,)
Is closed graph operator in C(I, X) x C(I, X)

Our main result may be presented as the following
theorem.

Theorem 3.1: :

Assume that hypotheses (H1) — (H6) hold, then the

problem (1) has at least one mild solution on Jj.

u —
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Proof 3.1: :
Let C := C(J1,X) be the Banach space of continuous
function from J; into X endowed with the sup-norm :
lt]|oo := sup{|u| : t € [=r,b]}; for uweC
Transform the problem into a fixed point problem. Con-
sider the multivalued map, N : C — 2€ defined by :

Nu::{hEC:

o(t);t € Jy
h(t) = < R(t)F(0, )+F(t ut) }
+f0 (t—s)g(s)ds;t € J
Where : g € S, = {g € L'(J.X) : g(t) €
G(t,u); teJ}

We have that the fixed points of N are mild solutions to (1).
Now we shall prove that A" is a completely continuous
multivalued map, u.s.c, with convex closed values. The proof
will be given in several steps.

Step 1 : Nu is convex for each u € C.

Indeed, if hy, hy belong to N'u, then there exist g1, 9o € S
such that for each t € J we have:

t
hi(t) = R(t)F(0, @)+ F(t, us) + / R(t— s)g1(s)ds
0
and
¢
ha(t) = R(t)F(0, )+ F(t, u) + / R(t — s)ga(s)ds
0
Let 0 < k < 1. Then for each t € J we have :
(khl + (- k:)hg)(t) -
t
[ B =) (k) + (1= Rygas) s
0
Thus khy + (1 — k)he € Nu ( because S,
then Nu is convex for each v € C

Step 2 : We will prove that A is a completely continuous
operator. Using (H6) it suffices to show that the operator

R(t)F(0, ¢) + F(t, u) +

is convex),

,u

N : C — 2€ defined by : Nju:={ hy € C:
o(t);t € Jo

hi(t) = < R(t)F(0, ¢) }
+ [T R(t - s)g(s)ds;t € J

is completly contlnuous

- N1 map bounded set into bounded set in C :
Indeed, it is enough to show that there exists a positive constant
[ such that for each h; € Mu; u e By ={u € C: |ul|lw <
q} we have ||h1]le <1 .
If hy € NMju then there exist g € S, ,, such that for every

t € J we have :
t
hi(t) = R(t)F(0, ¢ —|—/ R(t — s)g(s)ds
0

) we have for each ¢t € J :

H+/ IRt~ s)g()]ds
< Mi[e1 Ma + ¢

+ M sup \I/(u)(/otp(s)ds)

u€[0,q]

By (H1) — (H3) , and (H

[ ()] < [|R(H)F

Then for each h € N7 (By):
171 () [loe < Mi[e1Ma + o]

+ M; sup \Il(u)(/obp(s)ds)

u€[0,q]
Then N is bounded.

i1- N1 maps bounded set into equicontinuous sets of C:

Let 71,7 € J;71 < 72, and B, be bounded set of C; for
each u € B, and h; € Niju; there exist g € S, . such that :

Gu

hi(t) = R(t)F(0, ¢) + /Ot R(t —s)g(s)ds; teJ

Thus,

hl(Tg) —

Then

[h1(72) = ha(m)|| < [[R(72) — R(71) ||

+ /O R(7s — 5)
— R(11 — s)|[llg(s)|lds

-/ " 1R — 9)l9(s)]ds

1

As 79 — 71 the right-hand side of the above inequality

tends to zero, implies that Nju is equicontinuous on J;
iti- V(t) = {h1(t); b1 € N1(By)} is relatively compact

on X:
By (H4) V(¢) is relatively compact for t = 0; let 0 <t <b
be fixed and let ¢ be a real number satisfying 0 < ¢ < ¢ for
u € By and g € S, such that :

+/0 R(t — s)g(s)ds

hi(t) = R(t)F(0 teJd
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and,

t—e
+/ R(t—s)g(s)ds; teJ
0

The set V-(t) = {h1(t);h1 € N1(B
compact beceuse R(t) is compact then;

h1..(t) = R(t)F(0

1)} is relatively

() =0l = [ Rt =s)alo)]

¢
< M; sup \Il(u)/ p(s)ds.e
0

u€[0,q]
<re

b
With; » = My sup \If(u)/ p(s)ds, this implies that
u€e(0,q 0
V(t) is relativement C([)m]pact thus by (i), (it), (44) and by
Arzela-Ascoli theorem, we can deduce that A is completely
continuous then NV : C — 2€ is completely continuous.
Step 3 : A has a closed graph.
Let u,, — u, hy, € Nu, and h,, — h, we shall prove that
h € Nu.
hy, € Nu, then there exists g, € S, , such that

t
+/ R(t— s)gn(s)ds; teJ
0

We should prove that g € S, , such that for each t € J

F (0, @) + F(t, ur)

/Rt—s

Since I is continuous, we have that:

teJ

[ (7)) = ROFO, ) = F(t 1))
— (n(t) = ROF(O, ) = F(t,u)) o« — 0

As n — oo.
Consider the linear operator :

I:LYJ,X) — C(J,X)

/Rt—s

is a closed graph operator then we

g —T'(g

From Lemma 3.1; "0 S,
have that :

() = ROF(O, @) = F(t,un) €T (S5, )
Since u,, — u, and by the lemma 3.1 :

W(t) = ROF(O, ) — F(t,w) € T(S,,, )

such that

Gu

h(t) = R(t)F(0,

It follows that g € S,
90) + F(tv ut)

—|—/O R(t —s)g(s)ds;t € J

From the Step 1, step 2 and step 3 we deduce that N is
u.s.c, completely continuous then by lemma (2.3), A is a
condensing, bounded, closed and convex operator. In order to
prove that N has a fixed point, we need one more step.
Step 4 : The set Q@ :={u e X : \u e Nu for X>1}
is bounded. Let v € Q. Then \u € Nwu, thus there exists
g € S, such that :

u(t) = AT R(1)F(0,
+ A7 /0 R(t — s)g(s)ds

(Hs)and (Hs) we have :

90) + AilF(taut)

y (Hl) -
1WNSM(Q+QM®+Q>+QWt+@
+MAmwwmw8

Consider the function defined by :

w(t) = supf{|u(s)]: —r <s<t}h0<t<b

Let t* € [—r,t] be such that u(t) = |u(t*)].
* If t* € Jy = [-r,0] then :

u(t) < llofl < My
*x If t* € J =0, b] then

u(t) S M (]. + Cl)MQ + CQ> + Clp,(t) + c2

+mﬂmmw@m

then,;

1—01

<M1 ((1 +e1)M; + c2> + e

+m£mmw@m>

since My > 1 Let us take the right-hand side of the above
inequality as v(t) . Then we have.

1
cC = Z/(O) = i Ml(MQ(l + Cl) + CQ) + CQ) and

Vt € J then,

1
1—C1

V() = —— Myp(t)¥ (u(t))
By using H(5) we get :

Vo< w(t)¥(v(t))
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This implies that

/V“) dr </b (3)d </°O dr
wis)as —
v(0)=c \IJ(T) 0 c T+ \I’<T)

This implies that there exists a constant K such that v < K,
te Jand p < K, t € J. Since for every t € J we have
lugl] < () then

lulloe == sup{lu(t)]; —r <t < b} < K

Where K depends only on b and on the functions p and V.
This shows that €2 is bounded.

As a consequence of theorem 2.4 (Leray-schauders’s fixed
point) we deduce that A/ has a fixed point which is a solution
of (1).
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Abstract—This work is related to investigate integral
solution of wave equation with fuzzy initial data under
generalized fuzzy Caputo derivative. For the concerned
investigation, we use the Fourier transform. The exact
solution is given in the case of v = 2. Some examples
are presented to illustrate the results.

Index Terms—Generalized fuzzy derivative, Caputo
fractional derivative, Hukuhara difference, fuzzy fourier
transform.

I. INTRODUCTION

The present paper investigate the analytic solution
of the following problem

2
e D] u(t, x) —¢ cz%u(t,x) =0,
—co<x<oo, t2>0,1<y<2
u(0,x) = a(x)
%u(O,x) =b(x)

where a and b are two absolutely valued-functions
in E!. —g is the generalized Hukuhara difference.
¢uD is the generalized fuzzy fractional caputo’s
derivative.

In 1965 L.Zadeh [13] introduced the basic ideas of
the fuzzy set theory, as an extension of the classical
notion of set. The authors in [6] give a generaliza-
tion of the Hukuhara difference which guaranteed
the existence of this is for two segments in R. As
consequance in the same work Bede and Stefanini
presented the generalized derivative of a set valued-
functions. Agarwal et al. [1] are the pioneers work-
ing in fuzzy fractional (DEs). They formulated the

Riemann-Liouville differentiability notion as the base
to define the concept of fuzzy fractional DEs. After
that, they proved the existence of solutions of fuzzy
fractional integral equations (IEs) under compactness
type conditions using the Hausdorff measure of non-
compactness in the paper [2]. Allahviranloo et all in
[3] presented two new results on the existence of two
kinds of gH—weak solutions of these problems and
indicated the boundedness and continuous depen-
dence of solutions on the initial data of the problems.
In [5] the authors prove the existence and uniqueness
theorems for non-linear fuzzy fractional Fredholm
integro-differential equations under fractional gen-
eralized Hukuhara derivatives in the Caputo sense.
From the idea of [5] we will try to prove the existence
and uniqueness of fuzzy fractional wave equation.
This paper is organized as follows. In section 2
we recall some concepts concerning the fuzzy metric
space. the generalized derivative take place in the
section 3. In section 4 we give the concept of fuzzy
Fourier transform and we presented some properties.
We presented the solution of the fuzzy wave equation
in section 5. Finally in section 6 two examples are

given to illustrate the usefulness of our main results.

II. PRELIMINARIES

In this section, we present some definitions and
introduce the necessary notation, which will be used
throughout the paper.
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We denote E! the class of function defined as
follows:

El = {u :R—[0,1], u satisfies (1 —4) below}

1) u is normal, i.e. there is a xg € R such that

u(xg) =1
2) u is a fuzzy convex set;
3) u is upper semi-continuous;

4) u closure of {x € R", wu(x) > 0} is compact

For all & € (0,1] the a-cut of an element of E! is
defined by

u* = {xe]R, u(x) Zoc}

By the previous properties we can write
i = [u(0), ()]

By the extension principal of Zadeh we have

— uﬂ( _'_,UDC,.

= Au®

(u+0)"
(Au)®

For all u,v € E! and A € R
The distance between two element of E! is given
by (see [4])

d(u,v) = sup max{|ﬂ(zx) —o(a)|, |u(a)

~o(a)|}
ae(0,1]

The metric space (El,d) is complete, separable
and locally compact and the following properties for
metric d are valid:

1) d(u+ov,u+w)=d(uo);

2) d(Au, Av) = |Ald(u,v);

3) dlu+v,w+z) <duw)+dvz);

Remark IL1 The space (E',d) is a linear normed space
with ||u]| = d(u,0).

Definition II.2
mapping z : C — [0, 1] with the following properties:

[10] A| complex fuzzy number is a

1) z is continuous;

2) z%, w € (0,1] is open, bounded, connected and
simply connected;

3) z!
simply connected.

is non-empty, compact, arcwise connected and
We denote the set of all fuzzy complex number by C?.

Definition I1.3 [6] The|generalized Hukuhara difference
of two fuzzy numbers u,v € E' is defined as follows

U=v+w
U—gv=w
or v=u+(-lw

In terms of a-levels we have

(1=¢v)" = [min {u(w) ~ 20), 7(a) ~3(w)}
—o(a), @ }}

and the conditions for the existence of w = u —¢

max {u(«)

v € E! are

w(a) = u(w) —o(w) and w(a) = u(x) —0(a)

case (i) with  w(«) increasing,

w(w) decreasing, w(a) < w(a)

w(w) = u(a) —v(x) and W(x) = u(a) —2(a)
case (ii) with  w(a) increasing,

w(w) decreasing, w(a) < w(a)
for all « € [0,1].

Throughout the rest of this paper, we assume that
u—gv € E!

Proposition I1.4 [11]
[ —g ol = d(u,0)

Since ||.|| is a norm on E" and by the proposition
(T3 We Fave
Proposition II.5

[Au =g put, Off = A = pel ]

Let f :

The a-level of f is given by

f(x,a) = {i(x,oc),f(x,tx)], Vx € [a,b], Va € [0,1].

[a,b] C R — E! a fuzzy-valued function.
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Definition IL6 [|6] Let xy € (a,b) and h be such that
xo+h € (a,b), then the generalized Hukuhara derivative
of a fuzzy value function f : (a,b) — E' at xq is defined
as

iHon x0+h)h 2/ () gféH(xo)H =0 (II.1)

If fori(x0) € E satisfying (ILT) exfists| we say that f is
generalized Hukuhara differentiable (gH-differentiable for
short) at x.

Definition IL7 [6] Let f|: [a,b] — E' and xq € (a,b),
with f(x,«) and f(x,&) both differentiable at x.
We say that

1) fis ()
fhou(xo) = [f (x,0), F (x,0)]
2) f is (i)
fhgr(xo) = [F (x,), f'(x,0)]

Theorem IL.8 Let f: ] C R — E'and g: ] — R and
x € J. Suppose that g(x) is differentiable function at x
and the fuzzy-valued function f(x) is gH-differentiable
at x. So

— gH]-differentiable at xq if
(IL.2)
— gH]-differentiable at x if

(IL3)

(fQ)en = (f'8)gn + (f&)gn

Proof Using (IL5), fdr hi|enough small we get

H flx+h)g(x+h) —g f(x)g(x)
h

=5 (F(0)g(x))gn + (f(x)8'(x))gr)
£t gt g RN (et g (X)5()

—g ((f'(x)g(x))gn + (f(x)8' (x))gn)
()

(f(X+h)—gf(X))g(X+hP)l+f(X)(g(X+h)—gg x))

—¢ ((f'(x)8(x))gn + (f(x)8(x))gn)
(f (x+h)— ?f(x) (x+h) —¢ ( f/ x)g(x )H

+H(f( )(g(X+h) 28(x —¢ ((F(

IN

(f(x+h)h gf(x))g(x + h) — ((f’(x
| ) B ((f(x

which complet the proof by passing to limit.

IN

Definition I1.10 [6] We say that a point xo € (a,b), is
a switching point for the differentiability of f, if in any

neighborhood V of xg there exist points x; < xg < Xp
such that

1) type (1). at xq hdlds fwhile ddes tot hold
and at xp hdlds|and ddes #ot hold, or

2) type (2). at x; hdlds fwhile ddes #ot hold
and at x, hdlds]and ddes ot hold.

Definition IL11 [3] Let |f|: (a,b) — E'. We say that
f(x) is gH-differentiable of the 2nd-order at xo whenever
the function f(x) is gH-differentiable of the order i,i =
0,1, at xo,((f(xo))gl){ € E'), moreover there isn’t any
switching point on (a,b). Then there exists (f)g(x0) €
E' such that

e

Definition 1112 [3] Let f | [a,b] — E' and fiH(x) be
gH-differentiable at xo € (a,b), moreover there isn't any
switching point on (a,b) and f(x,a) and f(x,a) both
differentiable at xo. We say that

o f'is [(i) — gH]-differentiable at xy if

flen(x0) = |f"(x,), ' (x, )|
— gH]-differentiable at x if

o f'is [(ii)
rild 1"
flgr(x0) = [F"(x,), f"(x,0)]
Definition I1.13 [8] Let || : [a,b] — E'. We say that
f(x) is fuzzy Riemann integrable to I € E' if for any

€ > 0, there exists 6 > 0 such that for any division
P = {[u,v];{} with the norms A(P) < &, we have

a (2 (0~ u)f(é‘M) <e

P

where Y, denotes the fuzzy summation. We choose to
write ] = fab f(x)dx

Theorem I1.14 [6] If f |is gH-differentiable with no
switching point in the interval [a,b] then we have

[ Fie = £6) s £(@

Theorem IL.15 [12] Lei f(x) be a fuzzy-valued func-
tion on (—oo,00) and it is represented by f(x,a) =

{]:(x,oc),f(x,a)]for any fixed « € [0,1].
that |f(x,a)| and |f(x,a)| are Riemann integrable on

Assume
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(—o00,00) for all « € [0,1]. Then f(x) is improper fuzzy
Riemann-integrable on (—oo,c0) and the improper fuzzy
Riemann integral is a fuzzy number. Furthermore, we
have

| fedx=[ [ ferads, [ Fowds]

From this theorem we can discuss the Fuzzy Rie-

mann’s improper integral

Lemma IL16 Let f : R x Rt — E!, given by
f(x, t;a) = [f(x,t;a), f(x,t;a)], and let a € RT

If [7 f(x,t;0)dt and [ f(x,t;a)dt are converges then

/ f(x,t;a)dt € E?!
a

Proof Just use the conditions (IL.1).

Theorem IL.18 Let f : R x Rt — E! be fuzzy-valued
function such that f(x,t;a) = [i(x,t;a),j‘(x,t;a)].
Suppose that for each x € [a,c0), the fuzzy integral

[ f(x, t)dt is convergent and moreover [ f(x,t)dx as
a function of t is convergent on [c,00). Then

/Coo /;of(x,t)dxdt _ /°° /oo Flx, t)dtdx

Proof Applying the theorem of Fubini-Tonelli [7|] to tHese
two functions i (x,t;a) and f(x, t;a), and use the condi-
tions (I1.1)

Theorem I1.20 Suppose both, f(x,t) and Ox,, f(x,t),
are fuzzy continuous in [a,b] X [c, o). Suppose also that
the integral converges for x € IR, and the integral
[ f(x,t)dt converges uniformly on [a,b]. Then F is gH-
differentiable on [a, b] and

Fin(0) = [ duf (x, )

Proof The continuity of Ox, f(x,t) on [a,b] by the con-
vergence domainee theorem of to f(x,t;a) and flx, t;a)
and use the condition (IL.1).

According to the theorem (I.8) wle gpt

Theorem I1.22 Let f : [a,b] — E' and ¢ : [a,b] - R
are two differentiable functions (f is gH-differentiable),
then

[ frus(ix = f0)3(0) ~ fl@)z(a)
o [ Fg

Remark 1123 If f,¢ € AE' with lim f(x) = 0,

[x|—00

limy o0 §(x) = 0 then

I fnzix = [~ pog (e

III. Fuzzy GENERALIZED HUKUHARA PARTIAL
DIFFERENTIATION

In this section f : D C R x Rt — E! is called the
two variable fuzzy-valued function. The parametric

representation of the fuzzy-valued function fis ex-
pressed by f(x,t,a) = [Ji(x, ta), f(x, t,zx)}

Definition 111 [3] Let/f : D € R x Rt — E!
and (xo,tg) € ID. Then first generalized Hukuhara
partial derivative ([gH — p]-derivative for short) of f with
respect to variables x, t are the functions Oy, f (xo, to) and

Oty f (X0, to) given by

|1 f(xo+ R, to) —¢ f(x0,to) -
}113(1) H n —g Oxgp f (X0, fo)H =0
and
. 11f(xo,to + 1) —¢ f(x0,to) -
Hm H I +Oxgpr f (%0, fo)” =0

provided that axng(xo, to),atqu(xo, to) € EL
Definition ITL2 [3] Let |f(x,t) : D — E', (xo,t) €

D and f(x,t;a) and f(x,t;a) both partial differentiable
w.r.t. t at (xo,to). We say that

o f(x,t)is [(i) — p]-differentiable w.r.t. t at (xo, to) if

Ot o f (X0, t0) = [at[(xof to; &), 0¢f (xo, fo;a)}
(TiL1)

atii/ng(x(]/ tO) = |:at7(x01 tO; D‘)r afi(x()r tO; “):|
(I.2)
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We inspired of the definition (ILII) fve pfesented
the following definition

Definition IIL.3 f : R x R"R — E'. We say that
the function t = h(x), is switching boundary for the
differentiability of f(x,t) with respect to t, if for all x
belongs to domain of h(x) and for all t € R™, there exist
points tg < t1 < tp such that

1) at (x,t) (IL1) hplds fwhile (IL.2) dpes Hot hold and
at (x,ty) (UL2) Hpldsland (L) does #ot hold, or

2) at (x,t1) ((.2) hplds pohile (1) dpes rlot hold and
at (x,tp) (L) Hpldsland (IL2) dpes #ot hold.

Theorem IIL.4 Consider f : R x Rt — E! and u :
R — E! are fuzzy-valued functions such that u(x;n) =
[u(x; ), u(x;a)]. Suppose that h : R — Rand p : R x
R* — R is a differentiable function w.r.t. t and

0 L) >0,
Sup(n, 1) = tp(x,t) >
oip(x,t) <0,

and f(x,t) = p(x,

It P(¥,t) = {

In fact, the function hy(t) is switching boundary type 1
for differentiability of f(x,t) with respect to t.

hi(t) < x < hy(t);
ha(t) < x < hs(t)

t)u(x). Then oy, f(x,t) exists and

ati/ng(x,t) >0, h(t) <x<hy(t);

tignP (4, 1) <0, ha(t) < x < hs(t)

Proof Since p is valued in RT then we can set
fx, ;) = p(x,t)[u(x; a),u(x; «)], which implies that

Bt = dup(x, 1) (s ), H(x; )]

| If hi(t) < x < hy(t) then

[0tp (x, )u(x; &), dep(x, 1)1 (x; )]

then f(x,t) is [(i)-differentiable] by report at t. In the
same if hy(t) < x < h3(t) we get

Oty =

Otey = [Orp(x, 1)(x; &), O¢p (x, t)u(x; )]

thus f(x,t) is [(ii)-differentiable] by report at t

IV. GENERALIZED FUZZY FRACTIONAL DERIVATIVE
We present generalized fuzzy fractional derivative

and their properties.

Definition IV.1 [5] Let | f € AFE ([a,b]). The fuzzy
Riemann-Liouville integral of fuzzy-valued function f is

defined as following:
1 t
q = _g)11
1) = gy J, (=97 s
a<s<t, 0<g<Ll
Definition IV.2 151 Let  f(x, ta) =

[i(x,t;oc),?(x,t;oc)] be a
The fuzzy Riemann-Liouville integral of f is defined as

valued-fuzzy  function.

following:

1 t
q . _
DI f(t350) = gy [ (=) fiu(5)as
a<s<t 0<g<l1

Also we say that f is [(i) — gH|-differentiable at ty if

gHD?f(x, ta) = [in(x, t;tx),f(x, ta)l
and f is [(ii) — gH|-differentiable at t; if
DI f(x,t:0) = [DTF(x ), f(x )]

Lemma IV.3 Let f € AE and r € (0,1),then

1) If f is [(i) — gH]-differentiable at to then D' f is
[(i) — gH]-differentiable at t.
2) If f is [(ii) — gH]-differentiable at ty then D' f is

[(ii) — gH]-differentiable at t
Proof Note that
1 t
q = —s)qf!
D) = gy o =) fiu()ds

; 1
Since m(t—
0<t<s.

s)~1 is a nonegative quantity whenever

Theorem IV.5 Let f € AE' and q € (1,2),then

guDIf(t) = (uDI7 fop (1)
Proof We set f(t) = [f(a), f(t;

@3 ]

If f is [(i)-differentiable] then
f1) = [f' (), F (1)

«)]and use lemma
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and
DI7Lf(1) = [DI7Yf (1), DTLF (£ 00))
If f is [(i)-differentiable] then
f@) = [F (50), f ()]

and

qulf(t)l _ [qulf/(t;a)l qulf/u_; 0()]

Proposition IV.7 Let f : LE'
IF DYLR() = ge), then f() = £(0) + 5 0) +
I7g(t)
Proof We set f(t) = [J:(t;tx),f(t;a)} and
g(t) = [g(ta),g(ta)].
1) If f is [(i)-differentiable] by theorem [ ]
D7 Uf(t) = [DV ' f(a), DY f(ta)]
= [8(ta),8(£a)]

Which implies that

D“Y’lj:(t,'oc) =
DY f(ta) =

By [9] we| get
f(ta) (0;0) +tf'(0;) + 17 g (; )
Flb0) = FO0) + 17 (00) + g (10)
in the same if f is [(ii)-differentiable] then

{f(m) = f
fba)=f

F(8) = f(0) + tfgp (0) + 1" g(h)

V. Fuzzy FOURIER TRANSFORM

f
f

(0;) + £F (0;0) + I Lg(t;a)
(0;a) +

;) tf(O;oc)—b—I”’%(t;oc)

In this section we discuss the Fourier transform in

the fuzzy case
Lemma V.1 If f € AE" then the map

F: R+— C!

w— [ f(x)ewvdx

is well defined
Proof We have

Jeoemse] = e
Since f € AE' then fx)e v ¢ AC, which complet
the proof.
Remark V.3 In the same the map and under same as-
symption

F: R +— C!
w— [Z f(x)evdx

is well defined

By the previous lemma and remark we can give a

definition of the fuzzy Fourier transform

Definition V.4 Let f : R — E! a fuzzy-valued function.
The fuzzy Fourier transform of f, denote F(f) : R — C!,
is given by

F(f) = = [ e emdx = Fw)
Also the fuzzy inverse Fourier transform of F(w) is given
by

FHE@) = o= [ fwedr =
By the conditions (I.1) we have

Remark V.5 Let f € AT,

If f(x, ;) = [f(x, t; ), f(x,t; )], then we can denote

F(fx ) = |F (fxta), F (Flx,ta)) |
with
[21,22] = [Re(z1), Re(z2)] X [Im(z1), Im(22)]
and
FUfb0) = [F (foba), 7 (Fa b))

Using the conditions (IL.1) and the linearity of
Fourier transform on a "crisp" function we get for
alla,b >0

aF (f(x, t;a)) +bF (g(x, t;a)) = F (af (x,t;0) + bg(x, t;a))
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Theorem V.6 Let f € AE" such that lim f(x) =0.

[x]—o0

suppose that fgy; € AE' Then

F(fin0) = iwF (£(x))
Proof Using theorem (L2 we ket
v ( éH(x)) =
= [l )ex|= —g (—iw) [, f(x)e
Using the limite lim f(x) = 0 we get the result.

|x|—o00

iwx dx}

Corollary V.8 IfféEH € AF' and |l‘im FOE =0
X|—00
for k=0,1,2, then
F(fi(0) = =P F (f(x)
By the theorems (I[[.20) and (IV.5)[we]have
Theorem V.9
F (guD{f(x,t)) = ¢uD]F (f(x,1))

VI. THE SOLUTION OF THE FUZZY FRACTIONAL WAVE

EQUATION
In this section consider the following problem

gD u(t, x) gczaazu( x) =0
O0<xt<], 0<y<l1
u(0,x) = a(x),

S5u(0,x) = b(x)

where a and b are belongs to AE',

(VL1)

Proposition VL1 the problem (VLI) hasla unique solu-
tion.

Proof Let u(x,t) is fuzzy absolutely integrable, we define
the fuzzy Fourier transform of u(x,t) and its inverse by

F (u(x,t)) / e iy = U(w,t
(u( F (w,t)
F L (U(w,t)) / )etdw = u(x, t
(u( r (x,t)
If D?gHu(x,t), Oxgu (X, t) and Oxy,u(x,t) are fuzzy

absolutely integrable in (—oo,00) by using

2
F (anDfu(t,2)) ~ 7 (@5 5ut,)) =0

It follows from the corollary (V-8) fhal

2
F (czaaxzu(t,x)) = —w?U(w,t)

F (guDlu(t,x)) = D/U(w, 1)
We get
D U(w, t) = —*U(w, t)
It follows that
gHD;’qUéH(w,t) = —2U(w,t)

Thus we have the following problem

giD!™ u glw, t) = —cU(w,t) (VL.2)
U(w,0) = F(a(x)) (VL3)
QU0 =Fk) (V1

by lemma 3.2 [5] this|problem has a unique solution given
by

U(w, t) =U(w,0) + tEU(w 0)—¢

oo h e

if u' is [(z')-dzﬁ‘erentzable], and

)" 2U(w, T)dds

=U(w,0) + t%U(w,O)—i-

2 t s B
m/o /0 (s—1)7 2U(W/T)d1'ds

if u' is [(ii)-differentiable].
Which implies the existence and uniqueness of the solution
of the problem (VL2) and by the inverse of Fourier

transform we get the existence and uniqueness of the

solution of (VLI_]

U(w,t)

VII. Casgy =2
In this section we set
u(x, o) = [u(x,t;a),u(x, fa))

a(x; o) =
b(x;a) =

If u' is [(i)-differentiable] then
0? 02

pYeLs u(x, ;o) = czﬁu(x t; )
0? P _
pY L u(x, o) = cza—xzu(x, ba)
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which implies

u(x, t;a) = F(x —ct;a) + G(x + ct; )
u(x, o) = F(x — ct;a) + G(x + ct;a)
where
a(x;a) = F(x — ct; ) + G(x + ct; ) (VIL1)
a(x,t;a) = F(x — ct;a) + G(x + ct;a) (VIL2)
and
b(x;a) = F'(x — ct;a) + G'(x + ct; ) (VIL3)
b(x,t;a) = F/(x —ct;a) + G'(x +ct;a)  (VIL4)

By the conditions (I.1) the solution is given by
u(x,t) = F(x —ct) + G(x +ct)
where F and G are given by the above formula
(7.1) — (7.4).
VIII. EXAMPLES

In this section we will give some examples to

illustrate the previous results.

Example VIIIL.1

gHDt%u(t,x) —¢ czaa—;u(t,x) =0
0<xt<l, 0<y<l1

u(0,x;0) = [(1+ zx)e’xz, (3— oc)e’xz},
%u(o,x)

(VIIL1)
=
—0
the solution is given by u(x,t) = F~1 (U(w,t)) with

— +1,—w? —at3 ,—w?
Ulw,t) = [*5e tw  S2ee?] 4
S
ré)/o /0 (s — 7)~ tU(w, 7)dTds

Example VIIIL.2

2
grDHu(t, x) —¢ czaa?u(t,x) =0

O<x,t<]l 0<y<l1
(VIIL.2)

u(x,0;0) = [txe_xz, (2— oc)e_xz],
=0

%u(x,O)
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Fig. 1. Lower and upper branch of u(x, f)with o« =1

the solution is given by

u(x,t) = [a,1— g]e_xcosh(ct)

IX. CoNCLUSIONS

This study makes it possible to explain the wave
phenomena with uncertainty in experimental data.
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Abstract—In this paper, we establish the Ulam-Hyers stability
and Ulam-Hyers-Rassias stability for fuzzy integrodifferential
equations under Caputo gH-differentiability by using the fixed
point method.

Index Terms—Fuzzy Ulam-Hyers-Rassias stability, Caputo
fractional derivatives, fuzzy fractional integrodifferential equa-
tions, fixed point theory.

I. INTRODUCTION

In this paper, we will propose fuzzy Ulam-Hyers-Rassias
stability for the two kinds of fuzzy fractional integrodifferen-
tial equations of order o € (0,1) with generalized Hukuhara
derivative under form

{ SuDu(t) = f(t,u(®) + [, g(t, 5,u(s))ds, t € [0,a],
(O) =Ug € E.

(D
Where HDO‘ is the Caputo’s generalized Hukuhara deriva-
tive, f : [0,a] x E4 — E, is continuous on [0,a] and
g:[0,a] x [0,a] x E* — E is continuous on [0, a] x [0, a].
We wish to mention that the theory of fuzzy fractional integral
and differential equations have recently been the subject of
important studies (see e.g [1]-[11] ). In [12], Shen et al
studied the Ulam stability problems of the first order linear
fuzzy differential equations under some suitable conditions,
and in [13], Diaz et al has introduced a fixed point theorem of
the alternative for contractions on a generalized metric space,
with which Shen et al in [14] proved the Ulam stability of
fuzzy differential equations. Since the number of documents
dealing with the stability of Ulam for fuzzy fractional inte-
grodifferential equations (FFIEs) is rather limited compared
to the number of publications concerning FFIEs, we decide
to study by using the fixed point technique, the Ulam-Hyers-
Rassias stability for FFIEs.
Our results are inspired by the one in [15] where the fuzzy
Ulam-Hyers-Rassias stability of FFIEs is studied. The rest of
this paper is organized as follows: In section 2, we recall some
notations of the fuzzy number space, the fixed point theorem
and the basic notations of the Riemann-Liouville fractional
integral and Caputo fractional derivative for fuzzy functions.
The Ulam-Hyers-Rassias stability for fuzzy fractional inte-
grodifferential equations are discussed in Sections 3.

II. PRELIMINARIES

In this section, we introduce some definitions, theorems
and lemmas which are used in this paper. For more details,
we can see papers [3] [9] [12].

Definition 2.1: A function d : X x X — [0, +00) is called
a generalized metric on X if and only if d satisfies:

(1) d(z,y) = 0 if and only if x =y,

(2) d(z,y) = d(y,

(3) d(z,2) < d(x,y) +d(y, z) for all z,y,z € X.

Theorem 2.2: (Banach) Let d : X x X — [0,400)
be a generalized metric on X and (X,d) is a generalized
complete metric space. Assume that 77 : X — X is a
strictly contractive operator with the Lipschitz constant
L < 1. If there exists a nonnegative integer n such that
d(T" 1z, T"x) < oo for some z € X, then the following are
true:

x) for all z,y € X,

(i) the sequence 7™z converges to a fixed point 2* of T,

(it) a* is the wunique fixed point of T in
X*={yeX|d(Trz,y) < oo},

(i3) if y € X*, then we have d(y,z*) < 27d(Ty,y).

Lemma 2.3: Let ¢ : J — [0,+00) be a continuous

function. We define the set
X:={z:J — Rr |z is continuous function on J},

where R is the space of fuzzy sets, equipped with the metric
d(w.y) = inf{n € [0,400) U {+o0} | D(a(t)y(t)) <
ne(t), Vt e J}.

Then, (X, d) is a complete generalized metric space.

Let K.(R%) denote the family of all nonempty, compact and
convex subsets of R%. The addition and scalar multilplication
in K.(R%) are defined as usual i.e, for A, B € K.(R?) and
AR,

A+B={a+b|a€ Abe B}, M={Xa|a€ A}
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Let E? denote the set of fuzzy subsets of the real axis, if
w : R? — [0, 1], satisfying the following properties:

(i) w is normal, that is, there exists zp € R? such that
LU(Z()) = 1,

(7i) w is fuzzy convex, that is, for 0 < A <1
wAzi+(1-N)220) > min{w(z1),w(z)}, for any 21,z € RY,

(ii7) w is upper semicontinous on RY,

(iv) [w]° = cl{z € R? : w(z) > 0} is compact, where cl
denotes the closure in (R, | . |).
Then E¢ is called the space of fuzzy number. For
r € (0,1], we denote [w]" = {z € R? | w(z) > r}
and [w]° = {# € R? | w(z) > 0}. From the conditions
(i) to (iv), it follows that the r — level set of w, [w|", is
a nonempty compact interval, for all € [0,1] and any w € FE.
The notation [w]|” = [w(r),w@(r)], denotes explicitly the
r — level set of w, for r € [0,1]. We refer to w and @
as the lower and upper branches of w, respectively. For
w € E? we define the lengh of the r — level set of w as
len(Jw]™) = w(r)—w(r). For addition and scalar multiplication
in fuzzy set space 9, we have [w; + wa]” = [w1]" + [wa]",
Pw]" = Aw]".

The Hausdorff distance between fuzzy numbers is given by

Dolwn, wo] = sup {|w,(r) —ws(r) |,[@1(r) = @a(r) [}

The metric space (E¢, D) is complet metric space and the
following properties of the metric Dy are valid.

Dolwr + w3, wz + ws] = Dolwy, wa),
Do[)\wl, )\U]Q] :| A | DO[WDWZ]’
Do w1,ws] < Dolwi, ws] + Dolws, wa),

for all wy,wq, w3 € E% and X € R%. Let wy,ws € E?, if there
exists wy € EY such that w; = ws + w5 then ws is called the
H-difference of wy,ws. We denote the w3 by w1 © we. Let us
remark that wy © wy # w1 + (—1)ws.

Definition 2.4: The generalized Hukuhara difference of two
fuzzy numbers wi,wy € E? (gH-difference for short) is
defined as follows:

(Z) W1 = W2 +W3,

w1 Ogn Wy = W3 = { or (i1) wy = w1 + (—1)ws.

Let [0, a] be a compact interval in R™. Denote by diam[u(t)]"
the diameter of fuzzy set u, for ¢ € [0,a]. A function
u : [0,a] — E is called w-increasing (w-decreasing) on
[0, a] if for every r € [0, 1] the function ¢ — diam[u(t)]" is
nondecreasing (nonincreasing) on [0,a]. If u is w-increasing
or w-decreasing on [0, a], then we say that u is w-monotone
on [0,a].
Definition 2.5:

IJOA ©2021

Let t € (a,b) and h such that ¢ + h € (a,b), then the
generalized Hukuhara derivative of fuzzy-valued function z :
(a,b) — E? at t is defined as

i A R) Som a(t)

DgHm(t) - h—0 h

If Dyyx(t) € EY satisfying last inequality, we say that x
is generalized Hukuhara differentiable (gH-differentiable for
short) at ¢.

Definition 2.6: Let x : [a,b] — E?, the fuzzy Rieman-
Liouville integral of fuzzy-valued function z is defined as
follows:

1

(o) /a (t—8)* " xz(s)ds.

For a < t, and0<a§1.F0r=a:1,wesetjal:I,the
identity operator.

Definition 2.7: Let Dy € C(la,b], E?) N L([a,b], EY).
The fuzzy gH-fractional Caputo diffentiability of fuzzy-valued
function = ([gH|S — dif ferentiable for short) is defined
as following:
SH Dy x(t)
5)~(Dyr)(s)ds,
where 0 < a <1, ¢t > a.

Lemma 2.8: Suppose that x : [a,b] — E? be a fuzzy
function and Dypz(t) € C([a,b], EY) N L([a,b], E?). Then

(Jas2)(t) =

Tri *(Dgu)(t)

a

t
ticay Ja(t —

o (gu Do) (t) = x(t) Sgn z(a).

Lemma 2.9: Let u : [0,a] — E? be a continuous function
on [0,a] and let & € (0, 1), then the FFIE (1) is equivalent to
the following integral equation:

(1) If w is w-increasing on [0, a], then

u(t) = (0)+ 7 [ (¢ =9 (fs.u2)
+ /Sg(s,r,u(r))dr)ds, 2)
(2) If u is w-decreasing on [0, a], then
ut) =900 1) [ (e 9 (futo)
+ /S g(s,r,u(r))dr)ds. 3)

III. MAIN RESULTS

In the sequel, our aim score is to present the results for the
existence and the stability of the problem (1). The methods
to solve these problems are quite similar. However, since the
conditions for the existence of solutions of fuzzy fractional
integrodifferential equations (2) and (3) are dissimilar, we shall
present the two kinds (2) and (3) in two separate subsections.
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A. Fuzzy Ulam-Hyers-Rassias stability for FFIEs (2)

Firstly, we present the definitions of fuzzy Ulam-Hyers
stability and fuzzy Ulam-Hyers-Rassias stability.

Definition 3.1: We say that the problem (2) is fuzzy Ulam-
Hyers stable, if there exists a constant Ky > 0 such that for
each ¢ > 0 and for each solution v € C*([0,a], E?) of the
following inequality
D [§H193+v(t), Flto®) + [ g(t, s,v(s))ds] < eVt €
[0, al,
then, there exists a solution u € C'*([0, a], E?) of problem (2)
with

D [o(t),u(t)] < Kre,

for all ¢t € [0, a]. We call Ky a Ulam-Hyers stability constant
of (2).

Definition 3.2: We say that the problem (2) is fuzzy Ulam-
Hyers-Rassias stable, if there exists a constant C'y > 0 such
that for each ¢ > 0 and for each solution v € C([0,a], E4)
of the following inequality
D [GuD3v(®), F(t,v(t) + [1 g(t,5,v(s))ds| < (), ¥t €
[0, al,
then, there exists a solution u € C1([0, a], E?) of problem (2)
with

D o(t), u(t)] < Crep(t),

for all ¢ € [0, a] and for some nonnegative function ¢ defined
on [0, a.

Remark 3.3: We observe that definition 3.2 = definition
3.1.

In the following, we shall prove that the FFIEs (2) is fuzzy
Ulam-Hyers-Rassias stable on bounded interval by the fixed
point theorem.

Theorem 3.4: Assume that f : [0,a] x EY — E? and
g : [0,a] x [0,a] x B4 — E? are continuous functions
satisfying the following conditions:

(¢) There exists a constant L, > 0 such that:

max {D[f(t,u), f(t,v)]; D[g(t,s,u),g(t,s,v)]} < LsgD[u,v],

“4)
for all each (t,s,u), (t,s,v) € [0,a] x [0,a] x E<.

(74) There exists a constant K,C' > 0 such that 0 <
LigK(1+C) < landlet ¢ : [0,a] — [0, 00) be a continuous
function and increasing on [0, a] with:

t
/ p(s)ds < Cap(t), Vi€ [0,al, 5)

and
1
[(a)

If a continuously w-increasing function u :
satisfies the following inequality

D [g‘HDsw(t),f(t,u(t)) + g(t,s,u<s>>ds} < (1),
‘ (7

/ (t— ) \o(s)ds < Ko(t), Vie[0.al, ()

[0,a] — E4

for any ¢ € [0, a), then there exists a unique @ : [0, a] — E¢
of (2.2) such that

u(t) =u 1 t—sa_l s, (s ) s,r,a(r))dr)ds
i) = vt [ =9 s+ [ gt e

and

1
<
S 1-LjK1+C)

dla(t), u(t)] vie[0,a. )

Proof:

Let us consider the space of all continuous fuzzy function
u:[0,a] — E? by

X ={u:[0,a] — E%|u is continuous on [0,a]},
equipped by the metric

d(u,v) = inf{C € [0,4+00) U {+o0} | Du(t),v(t)] <
Co(t)}, Vvt €10,al.

By lemma 2.3, we observe that (X, d) is also a complete
generalized metric space. We define an operator @ : X — X
by

1 ¢ o
(Qu)(t) = 10 + s / (t— )1 (f (s, u(s))

+ /S g(s,r,u(r))dr)ds,  ¥tel[0,a]. (10)

Because f and g are a continuous fuzzy functions, the right
hand side of (10) is also continuous on [0, a]. This yields that
Qu is continuous on [0, a]. So, the operator @ is well-defined.
To apply theorem 2.2 in the proof of this theorem, we need
the operator @ to be strict contractive on X. For any u,v € X
and let Cy, € [0, +00) U {400} such that

d(uav) S Cuv, Vt S [0,(1}.
Then, by the definition of d, we have
D[U(t)ﬂ}(t)} < Cm;@(t),

vt € [0, al. (11)

From the definition of the operator () and assumption (4)-
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(6), we have the following estimation
1 ! a—1
D[(Qu)(t), (Qu)(t)] = Dluo + =— o) / (t—s)*" " (f(s,u(s))
+ [ s, ratr))aryds.ug e | T )
+/ﬁﬂ&nMﬂM0%L
1 t —s)*! s, u(s s,v(s s
< Fag | (6= 9" DU suu(s) S50l

I(a
;>/%‘8“1/1?8Tu (r)). gs,r.v(r))]dr)ds,

gé}&/u— )71 Dlu(s), v(s))ds

+FL<f~")/ (t—s)~ 1/D r)|dr)ds,
Lﬁq(g;”/a(t—s)a Lo(s)ds

+ L{@Eﬁ“’jct@-—s>a1<]Cs¢wr>dr>ds

< LfgCuvKSO( ) + LfgCquKSO(t)

= Lfg (1 + C)Cuvga( )

Hence

D[(Qu)(t), (Qu)(#)] < LK

So, by the definition of metric d, we get

d(Qua QU) S Lng

Where 0 < Ly,K(1 + C) < 1, hence the operator () is
strictly contractive mapping on X.

For an arbitrary w € X and from the definition of X and @,
it follows that there exists a constant 0 < C,, < oo such that:

D[(Qu)(t),w(t)] = Dluo + 53 it = s)* " (f(s.w(s))
+f; g(s,r,w(r))dr)ds,w(t)] < C,e(t),

for any ¢ € [0, a], since f, g and w are bounded on [0, a], and
the minimum of ¢(t) > 0 on ¢ € [0, a]. Then, we infer that
d(Qw,w) < C,, < oo. Therefore, according to (i) and (i¢) of
theorem 2.2, there exists a continuously function @ : [0, a] —
E? such that Q"w — 7 in the space (X, d) as n — oo and
Qu = u, that @ satisfies the problem (8) for any ¢ € [0, a].
Now, we shall confirm that {u € X | d(w,u) < 0o} = X*. For
an arbitrary u € E<, since u and w are bounded on [0, a] and
mine(o,q) ©(t) > 0, there exists a constant 0 < C,, < oo such
that D{w(t), u(t)] < Cyp(t) for any t € [0, a]. Therefore, we
have d(w,u) < oo for any u € E?, thatis {u € X | d(w,u) <
oo} = X*. By theorem 2.2-(i¢), we conclude that @ is the
unique fixed point of ) on X.
On the other hand, from the inequality (7) it follows that

d(u, Qu) < 1.

(1+O)Cuwe(t).  (12)

(1+C)d(u,v), for all u,v € E%.

(13)

IJOA ©2021

Finally, by theorem 2.2 — (i4¢) and from the estimation (13),
it implies that

d(u, Qu) < 1

d(a(t), u(t)) < (1+C) = 1- Ly K

- 1—Lng

1+C)’

which means the estimation (9) holds true for any ¢ € [0, a].
This completes the proof. [

B. Fuzzy Ulam-Hyers-Rassias stability for FFIEs (3)

Theorem 3.5: Suppose that the functions f, g and ¢ satisfy
all conditions as in theorem 3.4. Assume that for each ¢ &
[0, a] and for each continuous fuzzy function z : [0,a] — E<,
if the Hukuhara difference

z(0)e F(a) f (t— )1 (f(s,2(5) + [ g(s,r, 2(r))dr) ds,
exists and a continuously w-nonincreasing function v
[0,a] — E9 satisfies

Q t —5)* Y f(s,v(s
o [ =T )

. / g v(r))dr)ds] < (),

Dlv(t),vo ©
(14)

for any t € [0, a], where vy = g, then there exists a unique
solution @ : [0,a] — E? of the problem (3) which satisfies

(=D

a@zweﬁafu—WHU@ww
+ /Sg(s,r a(r))dr)ds, (15)
and
O e v (e L

for any t € [0, a].

Proof:
We consider the complete generalized space (X, d) defined as
in the proof of theorem 2. Define the operator P : X — X
as follows:

€[0,a]. (17)
Since the function f and g is continuous on [0 a]
and the Hukuhara difference g - 1) f

$) (f(s,u(s)) + [ g(s,r,u(r))dr) ds ex1sts s1m11ary to
theorem 1, it follows that Pu is well-defined on [0, a] or Pu
is continuous on [0, a]. Now, we observe that the operator
P is strictly contractive on X. Indeed, for any u,v € X and
let Cyy € [0,+00) U {400} be an arbitrary constant with
d(u,v) < C,y, for t € [0, a], that is, let us assume that
v(t)] < Cuvip(t),

Dlu(t), (18)
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for t € [0, a]. Furthermore, from (17), (18) and by the Lips-
chitz condition of f and g, we have the following estimation:

ﬂ t —5)* Y f(s,u(s
o [ =9 U suts)

ﬂ t —5)* Y f(s,v(s
o [ =9 st

D[(Pu)(t), (Pv)(t)] = Dluo ©

+ /S g(s,r,u(r))dr)ds, uy ©
+ /S g(s,r,v(r))dr)ds],

1 t o1
S@/a(t‘) DIf(s,

u(s)), f(s,v(s))]ds

1 ' oz 1

+F®0£ /mD (s,mu(r)), g(s,r,v(r))]dr)ds,
Lfg _ a—1 s s

= T(a) /a (t = 5)""" Dlu(s), v(s)ld
Lyg Jo- 1

+rmyl /TD o(r))dr)ds,

< LfgCuvKSO( ) + LfgCquKSO( )

= Lsg KK (1 + C)Cuvga( )
Hence

D[(Pu)(t), (Pv)(t)] < LigK(1+ C)Cuvp(t).  (19)
This means that d(Pu, Pv) < LK (1 + C)d(u,v). Hence,

the operator P is a strictly contractive mapping on X by the
assumption 0 < Ly,K (14 C) < 1. Simalar to the theorem
3.4, we can show that for each w € X satisfies d(Pw,w) < 0.
Hence, by theorem 1, it implies that there exists a continuously
function 4 : [0,a] — E? such that P"w — @ in (X, d) as
n — oo, and such that P4 = 4, that is @ satisfies (4.15) for
t € [0,a]. Similar to the proof of theorem 3.4, we observe that
there exists a constant C,, > 0 such that D{w(t), u(t)] < Cl,,
for any ¢ € [0,a]. This means that d(w,u) < oo for each
u € E4, or equivalently, {u € X | d(w,u) < 0o} =
Furthermore, by theorem 2.2, we imply that @ is a unique
continuous function which satisfies (15).

Moreover, by theorem 2.2, we also obtain

R d(u, Pu) 1
d(a(t), u(t)) < 7 LK1+ 0) = 1-L;,KA+C)’

which means the estimation (16) holds true for any ¢ € [0, a].
This completes the proof. [

IV. CONCLUSION

In this study, we are studied the Ulam-Hyers-Rassias sta-
bility for fuzzy intergodifferential equation via the fixed point
technique. This result can be used to study fractional fuzzy
differential equations with other types of derivative concepts in
fuzzy setting, for example, Riemann-Liouville and Hadamard
generalized Hukuhara differentiability.
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Abstract— Taxation is one of the instruments for changing
the behavior of agents, either by encouraging or discouraging
certain behavior’s considered good or bad, for instance certain
investments with negative or positive impacts that arouse
government’s concerns.

Eco-taxation seeks to change the behavior of agents
by using the instrument of taxation to discourage, especially,
negligent behavior leading to more pollution and climate
change. Eco-taxation also aims to implement the polluter-pays
principle, that is, to make the polluter bear the cost of his
environmental damage, as well as allowing the State to
generate tax revenues that can be directed towards financing
appropriate policies for a transition towards a more
environmentally friendly economy. Eco-taxation can thus be
used to limit the production and consumption of goods and
services that are harmful to the environment.

This research will compare all the tax levies existing
in Europe and in Africa (the case of Morocco), as these
instruments are designed to meet the challenges of climate
change, and to show how coherent eco-taxation contribute
effectively to changing the behavior of all economic actors.

Keywords— Eco-taxation, environmental taxation, ecological
taxation, climate change.

INTRODUCTION

Earth's climate is regulated by the ability of the
atmosphere to partially retain the energy reflected from the
earth. This physical phenomenon is called the greenhouse
effect, because it is similar to that encountered in a glass
greenhouse. It is a natural phenomenon essential to the
development of life on earth; in its absence, there would be
no liquid water, because the average temperature on earth
would reach degrees much lower than the current
temperature.

These problems of economic changes, posed by the
environment were partly behind the creation of certain taxes
and levies, because companies when they buy, sell or fix the
price of products, do not directly integrate the cost of the
damages that 'they cause the environment, and the future
scarcity of energies and raw materials.

Eco-taxation aims to integrate the environmental cost it
causes into the cost price; it is thus a means of changing the
behavior of economic agents in a way that is favorable to the
environment.

The use of Eco-taxation is also justified by the “polluter
pays” principle, that is to say, the polluter participates in the

Mohammed EL HADDAD
Head of the Management Sciences Laboratory,
Faculty of Legal, Economic and Social
Sciences- Agdal
Mohammed V University — Rabat, Morocco

financing of measures to prevent, reduce and fight against
pollution, via their tax contribution.

In this contribution, we will analyze all the levies aimed
at combating existing climate change in Morocco and in
certain European countries, our problematic will be as
follows: to what extent does eco-taxation -effectively
contribute to change the behavior of economic players?

We will try to answer this problem through three axes:
AXis I: Theoretical overview on Eco-taxation;

AXis Il: Eco-Taxation in Europe;

AXxis Ill: Eco-Taxation in Morocco.

Axis |: Theoretical overview on Eco-taxation.

Eco-taxation aims to solve the following problems:
e Fight against global warming;
e Reduction of pollution;
e Rational use of resources;
e Preservation of natural
biodiversity.

environments  of

Indeed, Eco-taxation, is a mode of production, a product, or a
service damaging the environment (“evils”), makes it
possible to limit the attacks only in the interest of allowing
the public authorities to finance the damages of the public
expenses.

The main difference between taxation and Eco-
taxation stems is its objective, where taxation is defined as
the means for the State to collect the resources which will
enable it to finance these expenses, or more generally public
goods (education , defense, health, etc.) or to ensure a certain
redistribution of income; while Eco-taxation aims to modify
the behavior of economic agents in order to prevent them
from making decisions that they might regret in the future, or
thus to limit consumption to protection of the Environment .

Several terms refer to the concept of Eco-taxation,
such as: Green Taxation, Environmental Taxation,
Ecological Taxation, Energy Taxation, and Eco Tax...

The notion of Eco-taxation is a challenge, which
has given rise to numerous debates on the most relevant
perimeter to be retained, which bring us to the definition of
the OECD [1], “all taxes and fees whose base is constituted
by a pollutant or, more generally, by a product or a service
which deteriorates the environment or which results in a levy
on natural resources ”.
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According to this definition, Eco-taxation goes
beyond the sole taxation explicitly designed to fight against
pollution, but incorporates another main purpose is the
financing of public services; also it has the effect of helping
to limit pollution.

The tax council in France in 2005[2]; announces
that “The situation can be considered as paradoxical: the
most important environmental effects are due to taxes and
fees for services rendered, created long before the emergence

of public policies in favor of the environment; fiscal
measures directly inspired by environmental concerns have
only a limited effect, whether it concerns the various
components of the tax on polluting activities (TGAP [3]) or
derogatory tax measures ”

This announcement is considered as a broad
approach, eco-taxation is an important instrument to face the
challenges of climate change, by using only energy taxation,
the objective is to change the behavior of all agents for a
transition to an economy low in carbon and more
environmentally friendly.

This approach was confirmed by Thierry Wahl,
Inspector General of Finance and responsible for a report on
the subject, "the most successful expression of the polluter
pays principle". It is intended to encourage virtuous behavior
in environmental matters and to deter bad behavior. It can
take several forms: tax, royalties, tax credit, exemption or
even direct aid. [4]

Environmental  taxation also allows the
internalization of external costs, that is to say to pass on in
the price of goods and services, certain environmental costs
which are currently unduly supported by future generations,
the objective is to push the agents to make financially and
environmentally sound decisions.

The externality or external effects appearing when
the decisions of an economic agent affect the well-being of
other agents, involuntarily, despite the absence of any market
transaction between them.

The external effects can be positive (beneficial
influence) or negative (deterioration of the situation).
Pollution constitutes a negative externality therefore, to get
polluters to take into account the external cost of their
activity, the regulatory world proposed by Arthur C. Pigou
[5] consists of the implementation of a tax called "
Pigovienne Tax ”, whose unit tax must be equal to the
marginal damage caused by polluting emissions at their
optimal level (that is to say the level which maximizes social
welfare, the marginal damage suffered by the victims is
equal to marginal cost of cleaning up the polluting sector) it
provides the price signal which ensures the internalization of
externalities.

At this level, all polluters want to minimize their
costs either by motivating innovation to seek less polluting
solutions to reduce their production costs or by offering less
polluting products by taking advantage of the opportunities
provided by environmental regulations.

In general, the increase in the price of the polluting good or
service due to the environmental tax results in an increase in
its price compared to other goods and services.

This increase in prices encourages consumers and buyers to
change their decisions vis-a-vis this type of polluting goods
and service, by choosing other non-polluting ones, this
decision change is desired precisely because it comes from
correct the behavior of agents against the environment
resulting from climate change.

As a conclusion, environmental taxation aims to integrate
additional costs in the form of environmental taxes (called
“externalities”) into the cost borne by each of the economic
parties. in addition to the regulatory approach, and stimulates
innovation in the medium term respects the polluter pays
principle, defined by the Organization for Economic
Cooperation and Development (OECD) in 1972, which
assumes that the costs resulting from pollution prevention,
reduction and control measures must be borne by the
polluter.

Axis Il: Eco-Taxation in Europe_ case of France_

Eco-taxation is the set of taxes, fees and charges that are
imposed on polluting taxpayers, more generally, through a
product or service that damages the environment. It was
introduced to limit the effect on the climate of the
consumption of polluting goods and services, and thus fight
against global warming by promoting energy savings and
less polluting energies. The “polluter pays” principle remains
the basis of Eco-taxation. This principle consists of
pollutants contributing to limiting pollution and damage to
the environment.

Environmental taxation occupies an important place in the
tax policies of member countries of the European Union.
This part provides an overview of environmental taxation in
Europe in general, based on numerous taxes that are part of
the list of taxes included in ecological taxation. Recourse to
European experiences, in particular the case of France,
constructs an evaluation of the efficiency and consistency of
ecological taxation.

In recent years, environmental taxation has evolved to
support the ecological transition. The government in France
has put in place an arsenal of regulations with stakeholders to
support these developments. We will present the main taxes
made up of Eco taxation in France, and an analysis of the
performance of the French experience in ecological taxation.
11-1 The main taxes constituted Eco-taxation in France:
Environmental taxation in France can be divided into four
categories depending on the function of the tax [6].

1-  The taxes themselves, which are compulsory levies
without compensation and the basis of which is a polluting
product. This is the case, for example, with the tax on
polluting activities (TGAP), based on emissions to the air or
pesticides, and the TIPP.

2- Charges that cover costs for environmental services,
mainly in the areas of water and waste.

3- So-called positive measures such as tax credits which
seek in particular to orient investment choices in a more
favorable direction for the environment.

4-Tax incentives (exemptions, deductions, rate cuts) which
also seek to orient behavior in favor of the environment.
Eco-taxation in France can be divided into four categories
depending on the type of tax; 4 following categories:
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* Energy taxes;

» Taxes on transport;
« Pollution taxes;

» Resource taxes.

In this part we will present a list of all the environmental
taxes in force in France, based on the Eurostat nomenclature.

For each tax, its base is specified in 2016.

TABLE 1. The Main Environmental Taxes in France.

Tax on registration
certificates (gray cards)

Tax power of the vehicle

Additional tax on motor
vehicle insurance the

proportional contribution to
insurance premiums on motor
vehicles

Tax

Base

Energy

Tax on company cars

Number of vehicles detained
individuals or leased by, or
held by employees of the
company and the miles driven
which  are  subject to
reimbursement fees

Internal tax on the
consumption of energy
products - TICPE

Petroleum products used as
fuels or fuels

Tax due by motorway
concessionaires

Number of kilometers

traveled by users

Carbon component
(integrated into ICT rates)

Fossil energies whose

combustion emits CO2

Civil aviation tax

Number of passengers and
mass of freight and mail
loaded in France

Contribution to the public
electricity service (CSPE)

Prorate of the quantity of
electricity consumed

Local taxes on electricity
(Internal tax on final
electricity consumption
TICFE + Tax on final
electricity consumption
TCFE)volt-amperes

Quantity of electricity
subscribed (TICFE if greater
than or equal to 250 Kkilo,
otherwise TCFE)

Tax on the purchase of the
most polluting new private
vehicles (penalty  of
purchase)

Payable on the most polluting
passenger cars, when they are
first registered in France

Solidarity contribution on
plane tickets

The number of passengers on
board, excluding passengers
in transit

Flat-rate tax on network
companies (IFER)

9 components: Wind turbines
and tidal turbines, nuclear or
thermal installation,
photovoltaic or hydroelectric
installation, electrical
transformers, radio stations,
gas installations, SNCF
railway equipment, RATP
railway equipment, and
certain telephone switching
equipment

Truck with an authorized
weight equal to or greater
than 12 tones, registered in
France or in a third country

Internal tax on the
consumption of natural gas
—maintenance. TICGN

Natural gas used as fuel

Fuel tax in the overseas
departments

Petroleum products used as
fuel

Axle tax (outside the EU) that has not
concluded a  reciprocal
exemption agreement with
France

. Hydraulic works and

Hydraulic Tax hydroelectric works
Turnover relating to
operations carried out for

Territorial solidarity | passenger  rail  transport

contribution services and commercial

services directly related to
them

Tax for the professional
committee of strategic
petroleum stocks

Costs of constitution and
conservation during an Andes
strategic stocks

Tax on ski lifts

Gross revenue from the sale
of transport tickets ski lifts in
mountain areas

Contribution  of  low-
voltage electrical energy
distributors  low-voltage
electrical energy

distributors

Receipts from

Tax on pleasure boats
(annual francization and
navigation rights)

Ownership of a displaced
vessel

Annual flat-rate tax on

pylons

Pylons supporting power lines
whose voltage is at least equal
to 200 kilovolts

Tax due by public air and
sea transport companies

The number of passengers
boarding in the Corsica and

Guadeloupe regions ,
Guyana, Martinique and
Reunion

General tax on polluting
activities ( TGAP) fuels

Release for consumption of
fuels

TIC on coal, lignite and
coke

Quantity of energy delivered
expressed in kWh

Fee owed by the railway
undertakings ~ for  the
regulatory authority for
railway activities

Part of the infrastructure use
charge paid to SNCF signal
within  the limit of 5
thousandths + € 0.10 / km
traveled on other lines of the
rail network

Transport

Tax on maritime transport

Number of passengers on
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at tination of protected
natural areas

board destined for protected
natural areas (list fixed by
decree)

Annual tax on the

Vehicles emitting more than

possession of polluting [ 245gCO2 / km (2409CO2 /
private vehicles (annual [km for vehicles registered
penalty) since 2012)

Vehicles  Used  vehicles

Purchase tax on the most
polluting second-hand

emitting more than 200gCO2
/ km or having a fiscal power
greater than 10 horsepower

Tax intended to finance the
development of vocational
training actions in road
transport

Additional tax on the issuance
of vehicle registration
documents for goods
transport and public
passenger transport

Pollution / resources

Water pollution

charges The domestic
pollution charge is based on
the quantity of drinking water
consumed: € 0.3 / m3

The fee for the modernization
of wastewater  collection
networks is based on the
quantities of water used and
sent to the collection
networks: 0.5 €/ m3

General tax on polluting
activities (TGAP)
(excluding fuel TGAP)

TGAP waste: installations for
the elimination of household

and similar waste
(incineration or storage) and
special  industrial ~ waste:

variation in rates depending
on the environmental
performance of the facilities
(between € 4 / ton and € 150 /
ton) TGAP emission
pollutants in the atmosphere
of certain substances:
between € 5 / t (benzene) and
€ 1,000 / t (mercury) TGAP

installations  classified for
environmental protection:
between € 501.61 and €

2,525.35 per year and per
TGAP installation lubricants
oils and lubricating
preparations: 44.02 € / t
TGAP detergents: between
39.51 and 283.65 € / t TGAP
extraction materials: 0.20 €/t

Water withdrawal

fees Annual volume of water
withdrawal , expressed in m2

The diffuse pollution charge
concerns phytosanitary
products
(phytopharmaceuticals) and
takes into account the
toxicity, the dangerousness
for the environment of the
substances they  contain:
between2 and 5,1 €/kg

Municipal and

departmental mining

Quantities ~ of  products
extracted from mines, mines
or quarries

The charge for  water
pollution of non-domestic
origin is based on the annual
pollution discharged into the
natural  environment  and
relates to 10 constituent
elements of pollution

The charge for  water
pollution by livestock is
based on the Large Cattle
Unit (UGB) and takes into

account the stocking rate
(number of animals per
hectare), by  promoting

extensive breeding: 3 € /
UGB

Fees on other water uses

The fee for the protection of
aquatic environments is based
on fishing cards: € 10 per
adult who engages in fishing,
for one year

The fee for water storage
during low flow: the base is
the volume of water stored
during low flow; the ceiling
rate of 0.01 € / m3 stored. The

fee for obstacles on
watercourses is due on
structures  constituting  an
obstacle on watercourses,

blocking sediment transit and
fish migration; the rate is set
by the water agency for a
maximum of 150 € / m of

height difference.

Value of the production of
Royalty due by the|liquid or gaseous
operators of liquid | hydrocarbons at the start of

hydrocarbon mines

the field (does not apply to
deposits at sea)

Tax on sea

products Fishery products
landed in France
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Is environmental taxation a tool for protecting the
environment? Gilles Rotillon In Different perspectives on the
economy 2007/1 (n ° 1), page 109.

Source : CGDD, d’aprés les annexes au PLF 2017, Tome 1
de ’Evaluation des voies et moyens et rapport Agences de
I’eau, et d’aprés le fichier Evaluation de recettes de la
DGDDI.

11-2 the performance of the French experience in
ecological taxation:

We can analyze the performance of Eco taxation in France
by several forms and methods, in our work we choose to
analyze it through their contribution to revenue budget, we
will take as a reference the year 2016 data available for
analysis.

TABLE 2. Total from environmental taxes, by tax category.

contributions by country. Relative to GDP, in 2015 the
revenue from environmental taxes in the European Union
reached the highest value in Croatia (4.1%), followed by
Denmark with a ratio of 4.0%, Slovenia (3 , 9%) and Greece
(3.7%). The lowest ratios between the product of
environmental taxes and GDP (below 2%) were recorded in
six Member States (Slovakia, Lithuania, Luxembourg, Spain,
Ireland and Germany)

At the end of 2016 the highest tax revenue / GDP ratio in
Europe was that of France, Belgium and Denmark The tax
revenue / GDP ratio in France (48.4%), Belgium (47.3%)
and Denmark (46.5%).[7] At the level of the OECD, the
ranking of France is slightly better (among the 20th out of 31
member countries for which data is available). In France the
internal tax on the consumption of energy products
constitutes the fifth tax revenue, behind the value added tax
(VAT), income tax, corporation tax and property tax.

TABLE 3 : The main environmental taxes in 2016

as a% of
in% of
Asa% of | the total
. Total
In millions . Gross taxes and
environ
euros Domestic social
mental
Product | contributi
taxes
ons
Total des Taxes
. 359 294 100,00 2,4 6,3
environnementales
Taxes sur I'énergie 275 392 76,6 1.9 4,8
Taxes sur les
71269 19,8 0,5 1,3
transports
Taxes sur la
pollution / les 12 633 3,5 0.1 0.2
ressources
EU-28, in 2015

Source: Eurostat (envactax) Ecotaxes

The environmental taxes in the European Union In 2015, the
total public revenues arising from environmental taxes in the
EU- 28 was 359.3 billion euros, or 2.4% of gross domestic
product (GDP) and 6.3% of total government revenue from
compulsory levies.

Fig. 1. Total product of environmental taxes, 2015 (in%)
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The product of environmental taxes for 2015 compared to
GDP and to the total product of all taxes and social

Revenue 2016 | & oopat

Name of the tax gll:lrrorll)lllons of classification
Internal tax on the
consumption of energy 28 456 Energy
products (TICPE)
Con?ribution _to_ public 8264
service electricity (CSPE)
Local taxes on electricity 1588
Flat-rate tax on network
companies (IFER) 1592
Domestic consumption tax 1104
on natural gas (TICGN)
Other energy taxes 1310
Tax on registration
certificategs (gray cards) 2187 Transport
Additional tax on

o 996
automobile insurance
Tax due_ by r_notorway 599
concessionaires
Tax on company vehicles 542
Civil aviation 410
Other taxes on transport 1167
charges
Water pollution 1960 Pollution
General tax on polluting
activities (TGAP) (waste,
atmospheric pollution, 654
etc.) excluding fuel TGAP
Water levy fees 385 Resource
Other resource taxes 22
Total (Eurostat field) 51235

Source: Volume | of ways and means of the 2018 finance bill, data
from the General Directorate of Customs and indirect duties.
Source: Eurostat (envactax), press release in November 2018
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According to these data, we see that environmental taxes (in
the sense of Eurostat) represent 51 billion euros in 2016, we
see that ecological taxation constitutes a transfer tax, where
the revenue collected under an environmental tax will be
allocated to the financing of an environmental public policy.
We take, for example, the case of fees collected by water
agencies, which are allocated to policies for managing water
resources and improving their ecological and sanitary
condition. So we will conclude that several environmental
taxes have proven their effectiveness through their
contribution to the financing of several public policies and to
return a capital which makes it possible to revive activity and
to make the economic system more efficient overall.

Axis I11: Eco-Taxation in Morocco

Morocco has drawn up a negative balance sheet in terms of
the environment, which calls for the economic priorities of
the Moroccan State, to face this problem through economic
and political instruments, and have taken several forms,
notably legal, financial or fiscal, and depending on the nature
of the environmental dimension (water, air, soil, waste, etc.).
Among these main forms that promote environmental
protection, environmental taxation. This part will be an essay
of an analysis of environmental taxation in the Moroccan tax
system. It wonders about the state of play of environmental
taxation in Morocco? And to know is the Moroccan
environmental taxation a viable solution to fight against
climate change?

The concept of environmental taxation:

The concept of environmental taxation was first mentioned
in Morocco in 2014 in a publication in the official bulletin N
° 6240 of 20-06-2014 of du Dahir n ° 1-14-09 of 4 joumada |
in 1435 (March 6, 2014) promulgating the framework law n
° 99-12 on the national charter of the environment and
sustainable development, that the concept of environmental
taxation, and this aforementioned by article 30 "Is instituted
an environmental taxation system composed of ecological
taxes and fees imposed on activities characterized by a high
level of pollution and consumption of natural resources.
These taxes and fees can be applied to any characterized
behavior, individual or collective, harming the environment
and infringing the principles and rules of sustainable
development”.

The state of play of environmental taxation in Morocco:
The industrial evolution of Morocco generated by the
massive exploitation of the means of production having
negative side effects, and contributes to the acceleration of
the degradation of the environment. Statistics show this
negative balance of the cost of environmental degradation in
Morocco, in particular in 2000, the World Bank conducted a
study entitled “Assessment of the cost of environmental
degradation in Morocco” (CDE). This study evaluated, for
the first time, the cost of environmental degradation which
was estimated, for the year 2000, at 3.7% of GDP.[8]in 2014
The cost of environmental degradation for Moroccan society
was estimated at nearly 32.5 billion dirhams, or 3.52% of
GDP.

TABLE 4 : The damage caused by the cost of environmental
degradation in Morocco.

. Average
er
pp. value %
Lower | Terminal | Average
o Gross
bound | Billions | value )
Domestic
of dh
Product
Water 11.10| 12.20 11.70 1.26%
Air 6.30 13.10 9.70 1.05%
Soils 4.60 5.30 5.00 0.54%
Waste (including
3.70 3.70 3.70 0.40%
hazardous waste)
Littoral 2.50 2.50 2.50 0.27%
Drills 0.00 0.00 0.00 0.00%
costs for Moroccan
. 2830 | 36.80 32.50 3.52%
society
Carbon emissions 4.60 25.40 15.00 1.62%
Cost for the global
. 4.60 25.40 15.00 1.62%
environment

Source: World Bank
World Bank Report, The Cost of Environmental Degradation in
Morocco Lelia Croitoru and Maria Sarraf (editors), January 2017.

Among the national costs, water pollution (1.26% of GDP) is the
main vector of water degradation, followed by air pollution (1.05%
of GDP. Land degradation also entails considerable costs (0.54%
of GDP), in particular due to erosion of cultivated land, land
clearing and the desertification of rangelands. Waste represents a
relatively high cost (0.4% of GDP).This critical situation shown by
these studies to assess the cost of environmental degradation, in
particular the studies based on carried out by the World Bank in
2006 and 2017, urges the Moroccan State to establish an effective
environmental policy.

Moroccan regulations on green taxation:
The Moroccan tax system is made up of an arsenal of taxes
and duties having an impact on the environment. n the effects
of the environment and exemptions and tax incentives
encouraging the protection of the environment, we will
include the main laws and codes:

. The General Tax Code (CGI) provides for measures
to be exempt from the Annual Motor Vehicle Tax (TSAVA);
vehicles intended for the public transport of person’s whose
total laden weight or the maximum total towed laden weight
is less than or equal to 3,000 kilograms and electric motor
vehicles and hybrid motor vehicles (electric and thermal); the
subjection of sales of solar water heaters to value added tax
(VAT) at the reduced rate of 10%.

. The Code of Customs and Indirect Taxes (CDII)
requires the royalty on the exploitation of phosphates which
was abolished from January 1, 2008 (article 7 of the finance
law for the year 2008); internal taxes on energy products; the
ecological tax on plastics; the special cement tax; the Special
Tax on Concrete Iron; the Special Tax on Sand.
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. Law 47-06 relating to the taxation of local
authorities constituted by the tax on the extraction of quarry
products; the parking fee; driver's license tax; tax on taxi and
coach licenses; the tax for checking vehicles over 5 years
old; the tax on motorcycles with a cylinder capacity equal to
or greater than 125 cma3. Established the rental value as the
basis for calculating the business tax is capped at 50 million
Dhs (this ceiling was 100 million Dhs from July 1, 1998 to
2001).
These measures are intended to limit large polluting
industrial companies. To confirm the objective of national
strategies against pollution and the effects of climate change.
“Green, national and territorial taxation to help make
Morocco a regional green factory Morocco has adopted an
ambitious policy of environmental protection and clean
energy production. This policy is certainly a source of
opportunities, both  for developing the country's
attractiveness and for generating new activities. Anticipation
of this problem when planning activity zones, by providing
them with the most advanced environmental characteristics,
would make it possible to benefit from a rationalization of
costs through the scale effect and at the same time from
reduce investment procedures and improve Morocco's
attractiveness for the launch of new economic projects, as
part of an integrated vision of 'Morocco Regional Green
Factory', Taxation, with its two dimensions, national and
local , should play a direct role, in support of this ambition,
which is likely to create activities with high added value and
quality jobs ™ [9]..

The Main Environmental Taxes in Morocco:
The Moroccan tax system made up of a number of taxes that
are favorable to the environment, we will mainly present:

. Taxes and taxes in favor of the environment

. The tax for checking vehicles over 5 years old;

. The tax on motorcycles with certain engine
capacity;

. Internal taxes on energy products;

. Taxes on the extraction of quarry products;

. The wastewater treatment charge;

. The tipping fee;

. The special cement tax;

. The ecological tax on plastics;

. The Special Tax on Concrete Iron;

. The tax on the deterioration of pavements;

. The Special Tax on Sand, ...

Main tax exemptions and reductions favorable to the
environment:

. Reduction of VAT on the rental of water and
electricity meters;

. The reduction of VAT on the economy car; and
solar water heaters

. The suspension of import VAT on butane gas;
Etc.

It has been observed that the measures of environmental
taxation either in the institutional or legal plan, are new
adopted or require an effort to further explain these
measures, but it should be noted that Morocco has taken a
big step to establish taxation with the objective of combating

environmental sustainable

development.

degradation and promoting

General conclusion:

To conclude this work, we can notice that
environmental taxation is a tool and instrument to deal with
climate change, but remains a difficult procedure to
implement like all tax regulations, green taxation was
introduced in the payroll of the European Union since the
1970s, this aspect has been developed either at the level of
the differentiation of taxes and levies, and to broaden the tax
revenue, or at the level of the expenditure target by the
financing of actions environmental protection.

Morocco is following a journey to implement environmental
taxation and then generalize it in the Moroccan tax system.
We note that Morocco has taken a big step forward in
establishing procedures and laws for the establishment of
taxes related to environmental protection, such as framework
law n ° 99-12 on the National Charter Environment and
Sustainable Development encourages, but the real debate
which aims to analyze the revenues of environmental
taxation, either at the level of fundraising, or at the level of
targeted expenditure.

Moroccan companies accept the introduction of Eco taxes
but they ask that the funds collected should be paid into
actions for the protection of the environment and not to be
paid into the state budget. At this level, we really have to
question the efficiency of the management of these funds.
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