
VOL 04 - ISSUE 03
2024

Editor in Chief
Prof. Dr. Hanaa HACHIMI

International Journal On
Optimization

and Applications

Vol 04 – Issue 03
2024

ISSN : 2737 - 8314 2

FOREWORD

The International Journal on Optimization and Applications

(IJOA) is an open access, double blind peer-reviewed

online journal aiming at publishing high-quality research in all

areas of : Applied mathematics, Engineering science, Artificial

intelligence, Numerical Methods, Embedded Systems, Electric,

Electronic en-gineering, Telecommunication Engineering... the

IJOA begins its publication from 2021. This journal is enriched

by very important special manuscripts that deal with

problems using the latest methods of optimization. It aims to

develop new ideas and col-laborations, to be aware of the latest

search trends in the optimi-zation techniques and their

applications in the various fields..

 Finally, I would like to thank all participants who have
contributed to the achievement of this journal and in particular
the authors who have greatly enriched it with their performing
articles.

Prof. Dr. Hanaa HACHIMI

Editor in chief

Full Professor in Applied Mathematics & Computer Science
National School of Applied Sciences, Ibn Tofail University,

Kenitra , Morocco

3

TABLE OF CONTENTS

Article 1 - Fault Injection Attacks on AES Cryptosystems: Vulnerabilities and Protections5

Article 2 - Homomorphic Encryption Schemes using AES: Techniques and Applications11

Article 3 - IDEA Cipher : Study of methods to strengthen the algorithm – Hybrid Encryption20

Article 4 - Security analysis of RSA algorithm: vulnerabilities and countermeasures28

Article 5 - Securing the Chain: Uniting Symmetric Encryption with Blockchain for Tomorrow's
Cybersecurity Landscape ...34

4

IJOA ©2024

International Journal on Optimization and Applications

IJOA. Vol. 4, Issue No. 3, Year 2024, www.ijoa.ma

Copyright © 2024 by Interna@onal Journal on Op@miza@on and Applications

Fault Injection Attacks on AES
Cryptosystems: Vulnerabilities and

Protections

1st BOUSLAM Elmehdi

Master's degree in
information systems

security, National School of
Applied Sciences, Ibn Tofail

University, Kenitra,
Morocco

elmehdi.bouslam@uit.ac.ma

2nd AMGHNOUSS
Redouane

Master's degree in
information systems

security, National School of
Applied Sciences, Ibn Tofail

University, Kenitra,
Morocco

redouane.amghnouss@uit.ac
.ma

3rd HARBOUCH Taha

Master's degree in
information systems

security, National School of
Applied Sciences, Ibn Tofail

University, Kenitra,
Morocco

taha.harbouch@uit.ac.ma

4th DIKOUK OUSSAMA

Master's degree in
information systems

security, National School of
Applied Sciences, Ibn Tofail

University, Kenitra,
Morocco

oussama.dikouk@uit.ac.ma

Abstract-This article investigates the vulnerabilities of the
Advanced Encryption Standard (AES) to fault injection
attacks and explores protective measures against such threats.
Fault injection attacks exploit physical and operational
weaknesses in cryptographic systems, potentially
compromising their security. Through detailed analysis and
case studies, this research highlights the susceptibility of AES
to various fault injection methods, including voltage
glitching, temperature manipulation, differential fault
analysis, laser fault injection, and electromagnetic fault
injection. The article also reviews current advancements in
defensive strategies, ranging from hardware modifications to
sophisticated error detection mechanisms.

Keywords- AES, Fault Injection Attacks, Cryptographic
Security, Differential Fault Analysis, Protective Measures.

I- Introduction

The Advanced Encryption Standard (AES) is a fundamental
cryptographic protocol in the domain of digital security,
serving to protect a wide range of information, from personal
data to national security communications. While the
theoretical foundation of AES is robust and it is widely
employed, it is not immune to attacks. Among the most
intricate and detrimental threats are fault injection attacks,
which pose a significant risk to cryptographic systems. These
attacks exploit physical vulnerabilities to introduce errors in
the cryptographic process, potentially leading to the
disclosure of secret keys and decryption of sensitive
information without requiring direct access to plaintext.

The sophistication and efficacy of fault injection techniques,
including voltage glitching, temperature manipulation,
electromagnetic disturbances, and laser injections, have
evolved, posing an escalating danger to cryptographic
devices. By manipulating physical conditions to induce
operational faults, attackers can modify the behavior of
cryptographic algorithms, thereby circumventing traditional
security measures. This vulnerability is particularly
problematic in environments where hardware is accessible or
in scenarios involving high value data, necessitating a
comprehensive understanding and mitigation of these risks.

This article seeks to comprehensively evaluate the
susceptibilities of AES to various fault injection attacks and
to appraise the efficacy of current countermeasures. Through
an examination of detailed case studies and recent research
results, the study aims to highlight critical weaknesses in
existing cryptographic implementations and to propose a
framework for enhancing AES security. This encompasses an
investigation of pioneering protective technologies and
strategies, spanning from integrated hardware solutions to
advanced error detection and correction mechanisms.

Furthermore, this discussion encompasses the implications of
these vulnerabilities in real-world situations, underscoring
the necessity for continual progress in cryptographic research
and development. As attackers refine their methods, the
cryptographic community must proactively tackle these
emerging threats through rigorous testing, advanced security
design, and the deployment of adaptive defensive systems

5

https://www.ijoa.ma/
mailto:redouane.amghnouss@uit.ac.ma
mailto:redouane.amghnouss@uit.ac.ma

IJOA ©2024

International Journal on Optimization and Applications

IJOA. Vol. 4, Issue No. 3, Year 2024, www.ijoa.ma

Copyright © 2024 by Interna@onal Journal on Op@miza@on and Applications

that are resilient against numerous fault injection
methodologies.

In conclusion, this article endeavors not only to educate about
potential risks but also to stimulate further research and
practical strides in cryptographic security. In doing so, it
seeks to fortify the resilience of AES systems against the
evolving landscape of fault injection attacks, thereby
ensuring the continued safeguarding of information in an
increasingly digitized world.

A - How AES works?

The AES Encryption algorithm (also known as the Rijndael
algorithm) is a symmetric block cipher algorithm with a
block/chunk size of 128 bits. It converts these individual
blocks using keys of 128, 192, and 256 bits. Once it encrypts
these blocks, it joins them together to form the ciphertext.

AES is designed as a block cipher, meaning it divides the data
into fixed-size blocks (typically 128 bits) and encrypts them
individually, transforming plain text into a secure form
known as ciphertext. This process enhances the security of
transmitted data by ensuring that even identical segments of
plain text in different messages produce distinct ciphertext
blocks.

To enhance the security of data, AES utilizes numerous
cryptographic keys that undergo multiple rounds of
processing. The AES standard accommodates key lengths of
128, 192, and 256 bits. Although AES-128 offers adequate
protection appropriate for many consumer applications,
higher levels of security, such as that required for classified
information like Top Secret, necessitate the enhanced security
provided by the 192 or 256-bit key lengths. The longer keys,
while providing heightened security, also demand more
processing power and prolong encryption time, thereby
ensuring a trade-off between security demands and
performance prerequisites.

Creation of Round keys :

A Key Schedule algorithm is used to calculate all the round
keys from the key. So the initial key is used to create many
different round keys which will be used in the corresponding
round of the encryption.

SubBytes :

This step implements the substitution.

In this step each byte is substituted by another byte. Its
performed using a lookup table also called the S-box. This
substitution is done in a way that a byte is never substituted
by itself and also not substituted by another byte which is a
compliment of the current byte. The result of this step is a 16
byte (4 x 4) matrix like before.

The next two steps implement the permutation.

ShiftRows :

This step is just as it sounds. Each row is shifted a particular
number of times.

•The first row is not shifted

•The second row is shifted once to the left.

•The third row is shifted twice to the left.

•The fourth row is shifted thrice to the left.

MixColumns :

This step is basically a matrix multiplication. Each column is
multiplied with a specific matrix and thus the position of each
byte in the column is changed as a result.

6

https://www.ijoa.ma/

IJOA ©2024

International Journal on Optimization and Applications

IJOA. Vol. 4, Issue No. 3, Year 2024, www.ijoa.ma

Copyright © 2024 by Interna@onal Journal on Op@miza@on and Applications

Add Round Keys :

Now the resultant output of the previous stage is XOR-ed
with the corresponding round key. Here, the 16 bytes is not
considered as a grid but just as 128 bits of data

The last round doesn’t have the MixColumns round.

The SubBytes does the substitution and ShiftRows and
MixColumns performs the permutation in the algorithm.

II- Fault Injection Attacks: An Overview and Case
studies on AES

Fault injection attacks are a significant category of active
attacks that have the potential to weaken highly secure
cryptographic algorithms. These attacks take advantage of the
physical weaknesses in cryptographic devices, introducing
faults that can jeopardize the security of encryption methods,
including the Advanced Encryption Standard (AES).

A - Definition and Methods

Fault injection refers to intentionally tampering with a device
in order to disrupt its operations, thus compromising the
security of cryptographic devices and potentially stealing
data. Attackers use various methods to carry out fault
injection:

• Voltage Glitching: poses a significant risk to the security
of cryptographic systems, particularly those utilizing the
Advanced Encryption Standard (AES). This method of
injecting faults involves creating temporary voltage
reductions that disrupt the regular operations of electronic
elements, potentially resulting in incorrect computations or
modified behavior in cryptographic devices. As elaborated in
the research of Zussa et al. (2014) [1] voltage glitches can be
particularly effective in causing timing constraint violations,
where the temporary under-powering impacts the
synchronization of operations within integrated circuits. This
interference can expose cryptographic keys or compromise
the encryption process, leading to security breaches. To
address these vulnerabilities, the research evaluates a delay-
based countermeasure aimed at identifying the emergence of
timing violations induced by voltage glitches.

• Temperature Manupilaton: Utilization of Temperature
and Voltage Manipulation for Differential Cryptanalysis:
Methods for controlling temperature and voltage serve as
potent techniques for inducing specific faults in
cryptographic devices, crucial for effectively executing
differential cryptanalysis attacks. Kumar et al. (2014) [2]
delves into the use of these cost-efficient methodologies to
achieve fault injection accuracies previously believed to be
unattainable without sophisticated equipment like lasers. The
authors demonstrate that through precise adjustments of
supply voltage and ambient temperature, they can generate
even the slightest fault effects necessary for cryptanalysis at
targeted areas within a chip. This approach is proven to
facilitate highly accurate attacks on application-specific
integrated circuit (ASIC) implementations of contemporary

ciphers such as PRINCE, with only a minimal number of fault
injections required to compromise the encryption. These
findings underscore the susceptibility of cryptographic
hardware to environmental manipulations and suggest that
implementations of the Advanced Encryption Standard
(AES) could also be vulnerable under similar circumstances.

• Differential Fault Analysis (DFA): is a powerful technique
in cryptanalysis that exploits hardware faults to uncover
cryptographic keys. This method examines faults such as
voltage spikes or temperature variations to infer encryption
keys from differences between correct and faulty outputs. A
recent study of Kim et al. (2012) [3] has exposed the
vulnerability of AES implementations with fault protection to
sophisticated DFA attacks. The research has introduced
enhanced DFA techniques that effectively compromise AES-
128, AES-192, and AES-256 standards by strategically
inducing faults in the key generation process. These findings
underscore the crucial necessity for robust protections against
fault attacks and emphasize that traditional DFA
countermeasures may prove inadequate when the key
schedule is the specific target. This study not only advances
our understanding of DFA but also prompts a reassessment of
security measures in cryptographic devices to counter these
refined fault injection strategies.

• Laser Fault Injection: The injection of faults using laser
technology presents a significant risk to the security of AES
implementations, even those that are equipped with advanced
protective measures. A study of Selmke et al. (2016)
conducted a trial of laser fault injection on an AES core that
was shielded by a specific type of countermeasure [4]. The
study brings to light the potential to bypass the protective
mechanisms of AES, particularly those that rely on hardware
redundancy for detecting faults. Through the precise targeting
and manipulation of cryptographic computations using
simultaneous laser faults, malicious actors can effectively
neutralize security enhancements based on redundancy, such
as the aforementioned countermeasure. This approach entails
injecting identical faults into multiple branches of a
redundant AES setup, thereby undermining traditional
protections against differential fault analysis (DFA). The
research emphasizes the need for the development of more
resilient fault detection methods capable of withstanding the
accuracy and stealth of targeted laser attacks. It suggests that
relying solely on hardware duplication may be insufficient for
applications requiring high-security measures.

• Electromagnetic Fault Injection (EMFI): refers to an
advanced method of active attack that disrupts the typical
operations of cryptographic devices by subjecting them to
deliberate electromagnetic disruptions. Maldini et al. (2018)
the utilization of genetic algorithms to enhance EMFI is
examined, with a focus on optimizing fault-inducing
parameters for improved effectiveness [5]. This strategy
facilitates a more efficient detection of vulnerabilities in
cryptographic implementations like AES. Through
systematic adjustments to the electromagnetic pulse
properties and the placement of the electromagnetic probe,

7

https://www.ijoa.ma/

IJOA ©2024

International Journal on Optimization and Applications

IJOA. Vol. 4, Issue No. 3, Year 2024, www.ijoa.ma

Copyright © 2024 by Interna@onal Journal on Op@miza@on and Applications

the genetic algorithm can pinpoint fault-inducing conditions
with greater accuracy compared to conventional techniques.
The heightened capability to induce faults allows for more
thorough exploration of potential weaknesses in the AES
implementation, thus underscoring critical areas necessitating
robust protective measures.

B - Targeted Components of AES

The Advanced Encryption Standard (AES) is particularly
susceptible to fault injection attacks at several critical stages
of its operation:

• Key Schedule: Any faults in the key schedule can result in
partial or complete exposure of the encryption key. Since the
key schedule is responsible for expanding the initial key into
multiple round keys, any manipulation can jeopardize the
entire encryption process.

• S-Box Computations: The substitution box (S-Box)
utilized in AES is of utmost importance for ensuring non-
linearity in encryption. Faults in this area can simplify the
output structure, rendering the encryption susceptible to
cryptanalysis.

• MixColumns: Faults introduced during this transformation
can alter the diffusion properties of AES, reducing the
complexity needed for secure encryption and making the
system vulnerable to attacks that exploit these weaknesses.

III- Vulnerabilities in AES Cryptosystems:
Understanding the Impact of Fault Injection Attacks

The Advanced Encryption Standard (AES) is commonly seen
as a strong cryptographic framework, providing substantial
security advantages for a range of uses, from securing private
communications to safeguarding sensitive data in commercial
and government settings. Nevertheless, similar to all
cryptographic systems, AES is not resistant to all types of
attacks. One of the most worrying types of attacks is fault
injection attacks, which make use of physical weaknesses to
compromise the security of encrypted data.

One of the pivotal methods employed in these attacks is
Differential Fault Analysis (DFA). DFA targets specific
rounds within the AES encryption process to analyze
discrepancies between expected and faulty outputs. By
introducing faults during intermediate rounds of AES,
attackers are able to detect variations in output that directly
correspond to the secret encryption key. This approach was
highlighted in Ali et al (2012) [6], which elucidated how
injecting faults strategically could enable attackers to discern
the entire encryption key with alarming accuracy. The
effectiveness of this method is grounded in the predictable
structure of AES. AES operates through multiple rounds of
permutations and substitutions; by disrupting these
operations, the resulting errors can disclose information about
the internal state of the cipher. For example, if a fault alters a
specific bit in the 8th round, the alterations in the output can
directly indicate how bits in the key influence particular
transformations. This study illustrated that even faults

injected within a limited scope within the AES rounds could
empower an attacker to retrieve the entire key with disturbing
precision, posing a significant threat to systems reliant on
AES for security.

Another notable vulnerability discussed in Fuhr et al. [7] ,
pertains to attacks that do not necessitate access to or
familiarity with the original plaintext. Instead, these attacks
depend solely on flawed ciphertexts resulting from
compromised encryption processes. Through meticulous
examination of the errors within these ciphertexts, arising
from targeted fault injections in subsequent encryption
rounds, adversaries can effectively derive the secret key. This
approach underscores a pivotal vulnerability: the security of
AES could be undermined without the need to breach the
higher threshold of direct plaintext access. The key novelty of
this approach lies in the exploitation of errors directly
stemming from faults in the later rounds of AES. These faults
can disrupt the final stages of the encryption process, leading
to flawed ciphertexts still containing systematic errors based
on the precise nature of the fault and its impact on the
structure of the AES algorithm. By scrutinizing the
distribution and characteristics of these faults, adversaries can
trace back to the AES key bits implicated in the specific
rounds affected by the faults. This method proves particularly
potent as it does not necessitate any knowledge of the
plaintext, solely a collection of flawed ciphertexts, thereby
broadening the spectrum of potential attack scenarios.

Both studies illustrate critical vulnerabilities in AES when
subjected to fault injection attacks. The DFA study
emphasizes the risks posed by accessible physical access to
the cryptographic device during operation, highlighting the
need for physical security measures as part of cryptographic
design. Conversely, the study on exploiting faulty ciphertexts
reveals a different risk dimension where attackers do not need
to control the input to the encryption process, a scenario that
could potentially bypass many conventional security
measures. Together, these studies underscore the necessity for
robust, layered security strategies that address both internal
algorithm robustness and external physical security to
safeguard against evolving fault injection techniques.

IV- Protective Measures Against Fault Injection Attacks

Fault injection attacks present a critical security challenge to
cryptographic systems, exploiting vulnerabilities to disrupt
operations and extract sensitive data. These attacks can
manipulate hardware or software to introduce errors into
cryptographic computations, potentially compromising the
security of the system. As these threats evolve, robust
countermeasures are essential to ensure the integrity and
confidentiality of cryptographic operations. This discussion
explores various strategies developed to safeguard systems
against such vulnerabilities, including preventive, detection,
and response techniques

A- Preventive Techniques:

Preventive techniques aim to forestall fault injection attacks

8

https://www.ijoa.ma/

IJOA ©2024

International Journal on Optimization and Applications

IJOA. Vol. 4, Issue No. 3, Year 2024, www.ijoa.ma

Copyright © 2024 by Interna@onal Journal on Op@miza@on and Applications

before they can impact the cryptographic process. An
effective method discussed by Qiang et al. [8], they
introduces two innovative methods that leverage the concept
of parity checks to enhance fault detection while balancing
security and overhead. These methods are termed "mixed-
grained parity check" and "word recombination parity
check."

• Mixed-Grained Parity Check: This approach applies
different levels of granularity in parity checking—finer for
security-critical operations and coarser for less critical ones.
This method improves fault coverage while managing the
overhead effectively.

• Word Recombination Parity Check: It reduces hardware
overhead by recombining sub-words from different
operations to form new words for parity checking. This
approach is likened to a fine-grained check but with reduced
resource usage.

On another study focuses on software-based countermeasures
specifically designed to thwart fault injection attacks during
the execution of cryptographic algorithms like AES on ARM
platforms [9], suggests selectively applying redundancy to
the most sensitive parts of the cryptographic process, such as
key fetching and table lookups. This approach aims to prevent
successful attacks by reducing the attack surface.

B - Detecting Techniques:

Although the primary focus is on prevention, the preventive
mechanisms inherently assist in fault detection. By dispersing
the impact of faults across the system state in an
unpredictable manner, these strategies help identify
anomalies that indicate tampering, thereby enabling early
detection of fault injections.

Ahish et al. (2020) [10], discuss the use of a low-power
CMOS-based mixed-signal framework to detect Differential
Fault Analysis (DFA) based clock-glitch attacks by
monitoring power side-channel statistics. The study
implements this technique using CMOS current-mode Gilbert
Gaussian Circuits-based Gaussian kernels. The method
allows for dynamic updates to the statistical model in real-
time through a sliding window approach, and it includes
adjustable parameters to enhance detection efficiency, such as
kernel standard deviation and likelihood threshold.

By leveraging these methods, the system can detect not only
intentional clock-glitch attacks during encryption but also
unintentional glitches due to external noise or design
inefficiencies, further enhancing the robustness of the
security implementation.

C – Response Techniques:

In the face of detected faults, employing infective
countermeasures is crucial, in the study of Shamit Ghosh et
al. (2017) [11] details the use of infective countermeasures,
where any detected fault leads to a controlled yet randomized
alteration of outputs. This ensures that any data derived from

fault-induced computations is rendered useless to the
attacker, effectively containing the damage and mitigating
any advantage that could be gained from the attack.

V - Recent Advances in Protection Against Fault
Injection Attacks on AES Cryptosystems

The cryptographic systems, particularly the Advanced
Encryption Standard (AES), must progress in tandem with the
evolving cybersecurity threats. The ongoing risk of fault
injection attacks has led to numerous technological
advancements and state-of-the-art research dedicated to
enhancing the resilience of AES against these intrusive
methods.

A - Technological Innovations

Recent technological advancements have significantly
enhanced the protection mechanisms for AES against fault
injection attacks:

• Integrated Hardware Security Modules (HSMs):
Modern developments in HSMs have introduced
sophisticated sensors and active defensive mechanisms
capable of detecting and mitigating physical anomalies
indicative of fault injections. These modules are specifically
designed to operate under hostile conditions where tampering
risks are prevalent. They can swiftly trigger protective
responses such as immediate shutdowns or transitions to
secure operational states, thwarting attackers' attempts to
exploit fault-induced errors.

• Error Correction Code (ECC) Memory: The adoption of
ECC memory in cryptographic devices is another crucial
innovation. ECC memory is designed to automatically correct
common types of data corruption that could be induced by
fault injections, thereby preventing errors that could lead to
the leakage of sensitive information or erroneous decryption
outputs.

• Dynamic Cryptographic Algorithms: Some of the latest
approaches include algorithms that dynamically alter their
operational parameters in response to detected anomalies. By
adjusting their behavior in real-time, these algorithms
obscure cryptographic keys and data, thus complicating any
attempts by attackers to leverage consistent patterns in fault
injections for their gain.

B - Research Frontiers

The frontier of cryptographic research continues to push the
boundaries of security with novel strategies aimed at
countering fault injection attacks:

• Quantum Cryptography: The advent of quantum
computing technologies brings with it new methodologies in
cryptography, such as Quantum Key Distribution (QKD).
Quantum cryptography is seen as a potential game-changer,
inherently secure against many forms of eavesdropping and
tampering, including sophisticated fault injections, due to the
principles of quantum mechanics.

9

https://www.ijoa.ma/

IJOA ©2024

International Journal on Optimization and Applications

IJOA. Vol. 4, Issue No. 3, Year 2024, www.ijoa.ma

Copyright © 2024 by Interna@onal Journal on Op@miza@on and Applications

• Artificial Intelligence in Anomaly Detection: Leveraging
artificial intelligence (AI) and machine learning to enhance
fault detection capabilities in cryptographic systems
represents a promising research direction. AI models can be
trained on extensive datasets of normal and compromised
operational states to recognize and respond to patterns
indicative of fault injections, potentially preventing attacks
before they compromise the system.

• Advanced Fault Tolerance Designs: Ongoing research is
also focused on developing more robust fault tolerance
architectures that incorporate features such as redundancy,
self-repair capabilities, and enhanced error detection at a
granular level. These designs aim to maintain the overall
integrity and security of the cryptographic process, even
when parts of the system are compromised.

The ongoing technological innovations and research efforts
are vital in ensuring the robustness of AES against the
continually evolving threat of fault injection attacks. By
staying ahead of potential vulnerabilities through advanced
protective measures and proactive research initiatives, the
cryptographic community can safeguard the security and
privacy of data across digital platforms.

VI. Conclusion

Our investigation has uncovered that despite its resilient
design, AES is vulnerable to various fault injection
techniques that could compromise cryptographic keys and
decrypt sensitive information. It is vital to implement
effective countermeasures, encompassing both hardware and
software solutions, to bolster the security of AES
implementations.

Future research should prioritize the development of more
robust cryptographic frameworks capable of withstanding
emerging fault injection methods. This entails exploring
novel fault detection and response techniques, integrating
advanced materials and technologies, and potentially
leveraging quantum cryptography to provide intrinsic
security against fault attacks.

The continual evolution of fault injection attacks poses a
substantial threat to cryptographic systems. It is crucial for
the cybersecurity community to maintain vigilance and
proactively strengthen the security measures of AES
cryptosystems. Collaboration between academic researchers
and industry practitioners will be indispensable in advancing
the landscape of cryptographic security.

References

[1] Zussa, L., Dehbaoui, A., Tobich, K., Dutertre, J.-M., Maurine, P.,
Guillaume-Sage, L., Clediere J., Tria, A. (2014). Efficiency of a glitch
detector against electromagnetic fault injection. Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2014.

[2] Kumar, R., Jovanovic, P., & Polian, I. (2014). Precise fault-injections
using voltage and temperature manipulation for differential cryptanalysis.
2014 IEEE 20th International On-Line Testing Symposium (IOLTS).

[3] Kim, C. H. (2012). Improved Differential Fault Analysis on AES Key

Schedule. IEEE Transactions on Information Forensics and Security, 7(1),
41–50.

[4] Selmke, B., Heyszl, J., & Sigl, G. (2016). Attack on a DFA Protected AES
by Simultaneous Laser Fault Injections. 2016 Workshop on Fault Diagnosis
and Tolerance in Cryptography (FDTC).

[5] Maldini, A., Samwel, N., Picek, S., & Batina, L. (2018). Genetic
Algorithm-Based Electromagnetic Fault Injection. 2018 Workshop on Fault
Diagnosis and Tolerance in Cryptography (FDTC).

[6] Ali, S. S., Mukhopadhyay, D., & Tunstall, M. (2012). Differential fault
analysis of AES: towards reaching its limits. Journal of Cryptographic
Engineering, 3(2), 73–97.

[7] Fuhr, T., Jaulmes, E., Lomne, V., & Thillard, A. (2013). Fault Attacks on
AES with Faulty Ciphertexts Only. 2013 Workshop on Fault Diagnosis and
Tolerance in Cryptography.

[8] Maoshen, Z., He, L., Peijing, W., & Qiang L. (2022). Parity Check Based
Fault Detection against Timing Fault Injection Attacks. Electronics 2022,
11(24), 4082.

[9] Barenghi, A., Breveglieri, L., Koren, I., Pelosi, G., & Regazzoni, F.
(2010). Countermeasures against fault attacks on software implemented
AES. Proceedings of the 5th Workshop on Embedded Systems Security -
WESS ’10.

[10] Shylendra, A., Shukla, P., Bhunia, S., & Trivedi, A. R. (2020). Fault
Attack Detection in AES by Monitoring Power Side-Channel Statistics. 2020
21st International Symposium on Quality Electronic Design (ISQED).

[11] Shamit Ghosh , Dhiman Saha, Abhrajit Sengupta and Dipanwita Roy
Chowdhury (2017). Preventing fault attacks using fault randomisationwith a
case study on AES. International Journal of Applied Cryptography Vol. 3,
No. 3 , 225-235.

10

https://www.ijoa.ma/

IJOA ©2024

International Journal on Optimization and Applications

IJOA. Vol. 4, Issue No. 3, Year 2024, www.ijoa.ma

Copyright © 2024 by International Journal on Optimization and Applications

Homomorphic Encryption Schemes using AES:
Techniques and Applications

1st Hind BOUHEDDA
Master SSI – ENSA Kenitra, Morocco

hind.bouhedda@uit.ac.ma

4th Achraf AZAHOUM
Master SSI – ENSA Kenitra, Morocco

achraf.azahoum@uit.ac.ma

2nd Salma DOUKKAR
Master SSI – ENSA Kenitra, Morocco

salma.doukkar@uit.ac.ma

5th Mouad JAOUANI
Master SSI – ENSA Kenitra, Morocco

mouad.jaouani@uit.ac.ma

3rd Otmane AMRAOUI
Master SSI – ENSA Kenitra, Morocco

otmane.amraoui@uit.ac.ma

Abstract- Homomorphic encryption schemes provide a
powerful mechanism for performing computations on
encrypted data without decrypting it. This capability holds
significant promise for enhancing the security and privacy of
sensitive information in various applications. In this paper,
we focus on exploring homomorphic encryption schemes
using the Advanced Encryption Standard (AES). We review
the fundamental principles of homomorphic encryption and
discuss the potential advantages and challenges of using AES
as the underlying cryptographic primitive. Furthermore, we
survey recent advancements in the field and highlight key
research directions for future exploration. Our analysis aims
to provide researchers and practitioners with insights into the
state-of-the-art techniques and opportunities for leveraging
homomorphic encryption with AES in real-world
applications.

Keywords- AES, Encryption, Homomorphic

I. INTRODUCTION
In order to enable safe computation on encrypted

data and protect the confidentiality and integrity of sensitive
information in a variety of situations, homomorphic
encryption has become a key technology. With
homomorphic encryption, computations can be done
directly on encrypted data, producing encrypted results that
can be decrypted to produce the same result as if the
computations were done on plaintext data. This is in contrast
to traditional encryption schemes, which make data
unreadable to unauthorized parties. This capability creates
new opportunities for secure computation outsourcing,
cooperative data sharing across trust boundaries, and
privacy-preserving data analysis. Finding a balance between
security, efficiency, and functionality is one of the main
issues in the design of homomorphic encryption schemes.

P. Paillier, “Public-key cryptosystems based on composite
degreeresiduosity classes,” EUROCRYPT 1999, LNCS, vol.1592, pp.223–238,
1999.

The Advanced Encryption Standard (AES) is a symmetric
encryption algorithm that has gained widespread adoption
due to its robust security features and seamless integration
on contemporary computing platforms.
High computing performance and strong security
guarantees can both be obtained by utilizing AES in
homomorphic encryption schemes. However, careful
consideration of AES's cryptographic properties and the
creation of appropriate algebraic structures are needed to
adapt it to support homomorphic operations. Homomorphic
encryption (HE) [1] is a kind of public key encryption that
allows computation over encrypted data with- out knowing
the secret key, and has several applications such as
delegated computation on cloud servers.
In this paper, we present an exploration of the combination
of homomorphic encryption with AES (Advanced
Encryption Standard) techniques, highlighting its
significance in preserving privacy and security in data
processing.
The background section provides an explanation of
homomorphic encryption principles, including its different
types such as partially homomorphic, somewhat
homomorphic, and fully homomorphic encryption. We also
provide an overview of the AES encryption algorithm,
including its block cipher structure, key sizes, and
cryptographic properties. Furthermore, we review previous
research on homomorphic encryption schemes and their
various use cases.
Moving on to the fundamentals, we delve into how
homomorphic encryption principles can be applied to AES
encryption. We discuss the challenges and considerations
involved in adapting AES for homomorphic operations.
Additionally, we provide an overview of existing
techniques and approaches for combining homomorphic
encryption with AES.

11

https://www.ijoa.ma/

IJOA ©2024

International Journal on Optimization and Applications

IJOA. Vol. 4, Issue No. 3, Year 2024, www.ijoa.ma

Copyright © 2024 by International Journal on Optimization and Applications

The subsequent section explores specific techniques and
methodologies for achieving homomorphic properties with
AES in detail. We discuss encryption schemes, such as
partially homomorphic or fully homomorphic encryption,
that utilize AES as the underlying cryptographic primitive.
We also evaluate the security, efficiency, and performance
characteristics of different AES-based homomorphic
encryption techniques.
In the applications section, we survey real-world
applications and use cases where homomorphic encryption
schemes using AES can be applied. We provide examples
of scenarios in data privacy, secure computation, cloud
computing, and other domains that benefit from the
combination of homomorphic encryption with AES.
Additionally, we showcase case studies or practical
implementations that demonstrate the effectiveness and
feasibility of AES-based homomorphic encryption in
various applications.
The article then addresses the challenges and future
directions in the field of AES-based homomorphic
encryption, highlighting areas for further research and
development.
Finally, we conclude by summarizing the key findings and
insights from the article, emphasizing the significance of
combining homomorphic encryption with AES in
enhancing privacy and security in data processing.

II. BACKGROUND
A. Homomorphic Encryption Definition:

Homomorphic comes from the Greek words for ‘same
structure’. It means that I can perform operations on things,
and the structure is preserved after a mapping.

The concept of homomorphic encryption was introduced
in [1], of which two of the authors are Ronald L. Rivest and
Len Alderman. The R and the A in RSA encryption.

 The most popular example for the use of homomorphic
encryption is where a data owner wants to send data up to the
cloud for processing, but does not trust a service provider
with their data. Using a homomorphic encryption scheme, the
data owner encrypts their data and sends it to the server. The
server performs the relevant computations on the data
without ever decrypting it and sends the encrypted results to
the data owner. The data owner is the only one able to decrypt
the results, since they alone have the secret key.

B. Homomorphic Encryption Types :
Ø Partially Homomorphic Encryption (PHE): In PHE

schemes, only one type of mathematical operation (either
addition or multiplication) can be performed on
encrypted data while preserving the homomorphic
property. For example, the RSA cryptosystem is partially
homomorphic with respect to multiplication.

Ø Somewhat Homomorphic Encryption (SHE): SHE
schemes allow a limited number of both addition and
multiplication operations to be performed on encrypted

data while maintaining the homomorphic property.
Examples include the Gentry-Halevi Smart (GHS)
scheme and the Brakerski-Gentry-Vaikuntanathan
(BGV) scheme.

Ø Fully Homomorphic Encryption (FHE): FHE
schemes support an unlimited number of both addition
and multiplication operations on encrypted data. In
addition to addition and multiplication, fully
homomorphic encryption schemes can be used to
perform a wide range of operations, including
subtraction, division, comparison, boolean operations
(AND, OR, NOT), and more. This makes FHE schemes
Turing complete, meaning that any computable function
can be evaluated on encrypted data.

C. Overview of AES:
The DES key length was a mere 56 bits. And it turned out that
this isn’t nearly enough to keep encrypted information safe.
For example, a test by distributed.net and the Electronic
Frontier Foundation showed that DES can be easily cracked
in a little bit more than 22 hours. Keep in mind that this was
done in 1999, when computing power was far from what it is
now.
Today, a powerful machine can crack a 56-bit DES key in
362 seconds.
On the other hand, cracking a 128-bit AES encryption key
can take up to 36 quadrillion years.

AES is a symmetric encryption algorithm and a block cipher.
The former means that it uses the same key to encrypt and
decrypt data. The sender and the receiver must both know --
and use -- the same secret encryption key. This makes AES
different from asymmetric algorithms, where different keys
are used for data encryption and decryption. Block cipher
means that AES splits a message into smaller blocks and
encrypts those blocks to convert the plaintext message to an
unintelligible form called ciphertext.

AES uses multiple cryptographic keys, each of which
undergoes multiple rounds of encryption to better protect the
data and ensure its confidentiality and integrity. All key
lengths can be used to protect Confidential and Secret level
information. In general, AES-128 provides adequate security
and protection from brute-force attacks for most consumer
applications. Information that's classified as Top Secret --
e.g., government or military information -- requires the
stronger security provided by either 192- or 256-bit key
lengths, which also require more processing power and can
take longer to execute.

How does AES encryption work?

 To understand the way AES works, you first need to learn
how it transmits information between multiple steps. Since a
single block is 16 bytes, a 4x4 matrix holds the data in a single
block, with each cell holding a single byte of information.

The matrix shown in the image is known as a state array.
Similarly, the key being used initially is expanded into (n+1)

12

https://www.ijoa.ma/

IJOA ©2024

International Journal on Optimization and Applications

IJOA. Vol. 4, Issue No. 3, Year 2024, www.ijoa.ma

Copyright © 2024 by International Journal on Optimization and Applications

keys, with n being the number of rounds to
be followed in the encryption process. So
for a 128-bit key, the number of rounds is
16, with no. of keys to be generated being
10+1, which is a total of 11 keys.

Add Round Key: You pass the block data
stored in the state array through an XOR

function with the first key generated (K0). It passes the
resultant state array on as input to the next step.

Sub-Bytes: In this step, it converts each byte of the state array
into hexadecimal, divided into two equal parts. These parts
are the rows and columns, mapped with a substitution box (S-
Box) to generate new values for the final state array.

Shift Rows: It swaps the row elements among each other. It
skips the first row. It shifts the elements in the second row,
one position to the left. It also shifts the elements from the
third row two consecutive positions to the left, and it shifts
the last row three positions to th

Mix Columns: It multiplies a constant matrix with each
column in the state array to get a new column for the
subsequent state array. Once all the columns are multiplied
with the same constant matrix, you get your state array for the
next step. This particular step is not to be done in the last
rounde left.

III. PRELIMINARY

§ Basic Definitions and Properties:
Plaintext: Plaintext refers to the original, readable, and
unencrypted data or message that is to be encrypted.

Ciphertext: Ciphertext is the encrypted form of plaintext,
resulting from the application of an encryption algorithm and
a secret key. It appears as unintelligible gibberish and
requires the appropriate decryption key to revert it back to
plaintext.

Stream cipher: A stream cipher is a symmetric encryption
method where plaintext is combined with a pseudorandom
keystream, typically generated from a seed value, to produce
ciphertext. It encrypts data bit by bit, offering high-speed
processing and lower hardware complexity compared to
block ciphers, but may be vulnerable to attacks if the same
seed is reused.

Block cipher: A block cipher is a symmetric encryption
algorithm that operates on fixed-size blocks of data,
transforming each block into ciphertext independently. It
uses a cryptographic key to perform the encryption and
decryption processes.

Keywords:

Gen: Generates public and secret keys based on a security
parameter λ.

Enc: Encrypts a plaintext M using a public key pk,
producing a ciphertext C.

Dec: Decrypts a ciphertext C using a secret key sk,
resulting in either the original plaintext M or a failure symbol
⊥.

Eval: Evaluates an n-ary operation f on n ciphertexts

(C1, . . . , Cn) using the public key pk, producing either a
ciphertext or a failure symbol.

13

https://www.ijoa.ma/

IJOA ©2024

International Journal on Optimization and Applications

IJOA. Vol. 4, Issue No. 3, Year 2024, www.ijoa.ma

Copyright © 2024 by International Journal on Optimization and Applications

§ Symmetric Key Encryption:
The following three PPT stands for “probabilistic

polynomial- time” algorithms make up a symmetric key
encryption (SKE) scheme as follows

- Gen 1λ : Given a security parameter λ, it outputs an
encryption key K.

- Enc K, M : Given an encryption key K and a plaintext

M, it outputs a ciphertext C.

- Dec K, C : Given an encryption key K and a ciphertext
C as input, it outputs either a plaintext or an error symbol ⊥.

We require an SKE scheme to satisfy correctness: for any
K Gen 1λ , any plaintext M, and any C Enc K, M , we always
have M Dec K, C .

§ Asymmetric Key Encryption:
Asymmetric Key Encryption, also known as public-key

cryptography, operates quite differently from symmetric key
encryption. Instead of using a single key for both encryption
and decryption, it employs a pair of keys: a public key and a
private key. The basic operations involved in an asymmetric
key encryption scheme are as follows:

- Key Generation (Gen): Gen(1^λ): Given a security
parameter λ, this algorithm generates a pair of keys:
a public key (PK) and a private key (SK). The public
key is intended for encryption, while the private key
is kept secret and used for decryption.

- Encryption (Enc): Enc(PK, M): Given a public key
PK and a plaintext message M, this algorithm
produces a ciphertext C. The ciphertext is generated
in such a way that it can only be decrypted efficiently
using the corresponding private key.

- Decryption (Dec): Dec(SK, C): Given a private key
SK and a ciphertext C, this algorithm retrieves the
original plaintext message M. It's important to note
that decryption is computationally feasible only with
the private key corresponding to the public key used
for encryption.

The fundamental property of correctness still applies in
asymmetric key encryption:

- Correctness: For any key pair (PK, SK) generated
by Gen(1^λ), and for any plaintext message M, if C
= Enc(PK, M), then Dec(SK, C) = M.

This property ensures that messages encrypted with
a public key can be successfully decrypted only by
the corresponding private key, thus maintaining the
integrity and confidentiality of communication in
asymmetric key encryption systems.

2 T. El Gamal, “A public key cryptosystem and a signature schemebased on

discrete logarithms,” IEEE Trans. Inf. Theory, vol.31, no.4,pp.469–472,
1985.

FV Scheme: The FV scheme, named after its creators Shai
Halevi and Craig Gentry, is a homomorphic encryption
scheme that enables computation on encrypted data without
decryption. It supports both addition and multiplication
operations on encrypted data, maintaining privacy
throughout computations.

BGV Scheme: The BGV scheme, developed by Zvika
Brakerski, Craig Gentry, and Vinod Vaikuntanathan, is a
homomorphic encryption scheme. It focuses on efficiency
improvements and flexibility in parameter choices, allowing
for optimized performance and customizable security levels
in privacy-preserving computations.

Additive HE: Supports only addition operation.

Linear HE: Extends additive HE to include scalar
multiplication.

d-level HE: Supports operations on ciphertexts of different
levels, allowing for more complex computations.

§ How does HE works:
In HE, operations on ciphertexts are designed to

correspond to operations on plaintexts.

When performing operations on ciphertexts, the result is
encrypted and can be decrypted to obtain the result of the
corresponding operation on plaintexts [].2

For example, in additive HE, adding two ciphertexts
encrypted with the same public key corresponds to adding the
plaintexts they represent.

Similarly, in linear HE, scalar multiplication of a
ciphertext corresponds to scalar multiplication of the
plaintext it represents.

In d-level HE, operations are defined based on the levels
of ciphertexts, allowing for more flexibility in computations
while maintaining security properties. The ciphertext level
ensures that operations are performed correctly and securely.

IV. HOMOMORPHIC ENCRYPTION WITH AES:
FUNDAMENTALS

Homomorphic encryption applied to AES involves
implementing mathematical operations on ciphertexts in such
a way that when these operations are performed, []3 they
produce results that are consistent with the operations
performed on the plaintext before encryption. In other words,
the operations performed on encrypted data yield the same
results as if they were performed on the plaintext data
directly.

3 R. Canetti, S. Raghuraman, S. Richelson, and V. Vaikuntanathan,
“Chosen-ciphertext secure fully homomorphic encryption,” PKC 2017,

pp.213–240, 2017.

14

https://www.ijoa.ma/
http://dx.doi.org/10.1007/978-3-662-54388-7_8
http://dx.doi.org/10.1007/978-3-662-54388-7_8
http://dx.doi.org/10.1007/978-3-662-54388-7_8
http://dx.doi.org/10.1007/978-3-662-54388-7_8

IJOA ©2024

International Journal on Optimization and Applications

IJOA. Vol. 4, Issue No. 3, Year 2024, www.ijoa.ma

Copyright © 2024 by International Journal on Optimization and Applications

One common approach to achieve homomorphic properties
with AES is to use fully homomorphic encryption (FHE)
schemes built on top of AES. FHE schemes, such as the
Brakerski-Gentry-Vaikuntanathan (BGV) scheme or the Fan-
Vercauteren (FV) scheme, allow for arbitrary computations
on encrypted data. These schemes enable addition and
multiplication operations on ciphertexts, which correspond to
addition and multiplication operations on the plaintexts.

Under this framework, encryption involves converting
plaintexts into ciphertexts using AES encryption. Then, using
homomorphic properties, mathematical operations such as
addition and multiplication can be performed directly on the
ciphertexts. These operations are executed in such a way that
they preserve the desired properties of the plaintext data.

For instance, in a scenario where two parties wish to compute
the sum of their AES-encrypted data, they can use
homomorphic addition to perform this operation directly on
the ciphertexts. Similarly, if they need to perform
multiplication operations on the encrypted data,
homomorphic multiplication techniques can be applied.

This capability is invaluable in scenarios where data privacy
is critical, such as secure computation in cloud environments
or collaborative data analysis. It allows organizations to
securely outsource computations to untrusted servers without
compromising the confidentiality of their sensitive data. By
leveraging homomorphic encryption with AES,
organizations can ensure that their data remains encrypted
throughout computations, mitigating the risks associated with
exposing plaintext data to potential adversaries and
enhancing overall data privacy and security.

V. TECHNIQUES FOR AES-BASED HOMOMORPHIC
ENCRYPTION APPLICATIONS AND CHALLENGES

Achieving homomorphic encryption directly with AES
(Advanced Encryption Standard) is challenging due to AES's
symmetric nature, lacking inherent homomorphic properties.
However, various techniques have been explored to integrate
AES within a homomorphic encryption framework or to
achieve functionalities akin to homomorphic encryption
using AES. Here are some strategies:

A. Secure Multiparty Computation (SMC):
Secure Multiparty Computation (SMC) is a cryptographic
technique that enables multiple parties to jointly compute a
function over their private inputs without revealing those
inputs to each other. While AES itself doesn't directly support
SMC, it can be used within an SMC framework to provide
encryption of data involved in the computation. Here's how
SMC can be applied in an AES-based
homomorphic encryption setting:
Overview:
 Secure Multiparty Computation (SMC): SMC allows
multiple parties to compute a function on their private inputs
while keeping those inputs confidential.

 AES-based Homomorphic Encryption: AES is a symmetric
encryption algorithm that can be used to encrypt data within
an SMC framework, enabling secure computation on
encrypted inputs.

Working Principle:
 Data Encryption:
 Each party encrypts its private input using AES encryption
before sharing it with the other parties involved in the
computation. This ensures that the inputs remain confidential
during the computation.

Secure Computation:
 The parties perform the desired computation on the
encrypted inputs within the SMC framework. This
computation could involve arithmetic operations (e.g.,
addition, multiplication) or more complex functions.

Result Decryption:
 After the computation is completed, the parties jointly
decrypt the result using a secure protocol. Since AES is
symmetric, all parties must agree on the decryption key to
decrypt the result.
 AES-based Homomorphic Encryption within the SMC
framework allows multiple parties to compute a function on
their private inputs while preserving the confidentiality of
those inputs, thereby enabling secure computation on
encrypted data.

Applications :
 -Secure Auctions: SMC can facilitate secure auctions
where bidders can submit their bids without revealing them
to other participants until the end of the auction price.
 This prevents bid manipulation and collusion.
 -Privacy-preserving data analytics: SMC allows multiple
parties to jointly analyze sensitive data without revealing
their individual inputs.This is useful in situations such as
healthcare research, financial analysis, and market research.
 -Voting system: SMC can be applied to design a secure
electronic voting system where voters can vote anonymously
and maintain the integrity of the election process without
revealing the votes of each individual.
Challenges : Secure Multiparty Computation (SMC) faces
challenges in efficiency, scalability, communication
overhead, trust assumptions, and key management.
Efficiency concerns arise due to the computational intensity
of SMC protocols, while scalability issues emerge with the
growing number of parties involved. Communication
overhead is a challenge due to multiple rounds of
communication; trust assumptions require careful
consideration in adversarial environments, and key
management presents difficulties in distribution, revocation,
and storage. Addressing these challenges is crucial for
practical deployment of SMC in secure and privacy-
preserving computation.

15

https://www.ijoa.ma/

IJOA ©2024

International Journal on Optimization and Applications

IJOA. Vol. 4, Issue No. 3, Year 2024, www.ijoa.ma

Copyright © 2024 by International Journal on Optimization and Applications

B. Hybrid Cryptosystems:
Hybrid cryptosystems in an AES-based homomorphic
encryption context involve combining the features of
symmetric and asymmetric encryption schemes within a
homomorphic encryption framework. This approach
leverages AES for efficient symmetric encryption of data and
incorporates asymmetric encryption for secure key exchange
and other cryptographic functionalities. Here's how hybrid
cryptosystems can be applied in an AES-based homomorphic
encryption setting:
Overview:
 Hybrid Cryptosystems: Hybrid cryptosystems combine the
efficiency of symmetric encryption with the security benefits
of asymmetric encryption, offering a balanced approach to
encryption.

Working Principle:
Symmetric Encryption (AES):
 The data owner encrypts their data using AES symmetric
encryption, generating ciphertexts that are efficiently
processed.
 Asymmetric Encryption:
 The data owner encrypts the symmetric encryption key
(DEK) used in AES with the public key of the intended
recipient, ensuring secure key exchange.
 Alternatively, asymmetric encryption can be used for other
cryptographic functionalities such as digital signatures or
secure communication.
 Homomorphic Operations:
 The encrypted data and keys can be processed within a
homomorphic encryption framework,allowing computations
to be performed on the ciphertexts without decryption.
 Homomorphic operations such as addition and
multiplication can be applied to the ciphertexts, enabling
privacy-preserving data analysis and secure collaborative
computation.
 Decryption:
 The recipient decrypts the symmetric encryption key using
their private key, allowing them to
decrypt the data encrypted with AES and perform further
computations or analysis.
Applications :
 -Secure Communication: Hybrid cryptosystems are widely
used to secure communication channels, such as SSL/TLS for
securing web traffic. Asymmetric encryption is used for key
exchange and authentication, while symmetric encryption is
used for bulk data transmission.
 - Data Storage: Hybrid cryptosystems are employed to
secure stored data in databases, file systems, and cloud
storage services. Asymmetric encryption can be used to
encrypt symmetric keys, which in turn encrypt the actual
data.
Challenges : Hybrid cryptographic systems face challenges
in key management, algorithm selection, performance

4 Efficient Homomorphic Proxy Re-Encryption for

Arithmetic Circuit Evaluation" by Zhoujun Li, Wenjing

overhead, integration complexity, and security
risks.Effectively addressing these challenges is critical to
ensuring the robustness and effectiveness of hybrid
cryptographic systems in securing communication channels,
data storage, and digital signatures, along with other
applications.

C. Proxy Re-Encryption:
Proxy Re-Encryption (PRE) is a [4] cryptographic technique
that allows a semi-trusted proxy to transform ciphertexts
encrypted under one key into ciphertexts that can be
decrypted under another key, without the need to decrypt and
re-encrypt the data. While AES itself doesn't directly support
PRE, it can be used within a PRE framework to provide
encryption and decryption capabilities.
Here's how PRE can be applied in an AES-based
homomorphic encryption setting:
Overview:
 Proxy Re-Encryption (PRE): PRE enables a proxy entity to
transform ciphertexts from one encryption key to another,
facilitating secure data sharing and delegation of access
rights. AES-based Homomorphic Encryption: AES is a
symmetric encryption algorithm that can be used for data
encryption and decryption within a PRE framework.
Working Principle:
 Initial Encryption: The data owner encrypts their data using
AES encryption with their own secret key, generating
ciphertexts that only they can decrypt.
 Proxy Re-Encryption: The data owner delegates access
rights to specific recipients by providing them with re
encryption keys. The proxy entity, armed with the re-
encryption keys, transforms the ciphertexts encrypted under
the data owner's key into ciphertexts that can be decrypted by
the recipients' keys using a proxy re-encryption algorithm.
Decryption: The recipients decrypt the transformed
ciphertexts using their own secret keys, obtaining the original
plaintext data.
Applications :
 -Content Distribution: PRE can be used for secure content
distribution, allowing content providers to encrypt data once
and delegate re-encryption to proxies for distribution to
different users or devices, without compromising data
confidentiality.
 -Secure Messaging: PRE can enhance the privacy and
security of messaging applications by allowing messages to
be encrypted once by the sender and re-encrypted for
different recipients by proxies, ensuring end-to-end
encryption without the need for the sender to manage
multiple keys.
Challenges : Proxy re-encryption (PRE) faces challenges in
key management, proxy reliability, performance overhead,
scalability, and privacy issues.Effective key management,
reliable proxy assurance, performance optimization,
scalability solutions, and privacy protection mechanisms are

Lou, and Y. Thomas Hou. (Reference:
https://ieeexplore.ieee.org/document/6562705

16

https://www.ijoa.ma/

IJOA ©2024

International Journal on Optimization and Applications

IJOA. Vol. 4, Issue No. 3, Year 2024, www.ijoa.ma

Copyright © 2024 by International Journal on Optimization and Applications

essential to successfully deploying PRE to enable access
control and share data securely.

D. Homomorphic Properties of AES-Like
Ciphers:

Homomorphic properties of AES-like ciphers in AES-based
homomorphic encryption refer to the ability of these ciphers
to preserve certain algebraic operations on encrypted data,
allowing computations to be performed on ciphertexts
directly without decryption. While AES itself lacks inherent
homomorphic properties, researchers have explored the
development of AES-like ciphers with homomorphic
capabilities within a homomorphic encryption framework.
Here's a brief overview:
Overview:
 AES-Like Ciphers: These are encryption algorithms
designed to mimic the structure and security properties of
AES while incorporating homomorphic properties.
Homomorphic Encryption Framework: AES-like ciphers
with homomorphic properties operate within a homomorphic
encryption framework, enabling computations on encrypted
data without decryption. Homomorphic Operations:
Homomorphic encryption schemes support operations such
as addition and multiplication on encrypted data, allowing
mathematical computations to be performed on ciphertexts.
Homomorphic Properties:
1. Additive Homomorphism: AES-like ciphers with additive
homomorphic properties preserve addition operations on
ciphertexts. When two ciphertexts encrypted under the same
key are added together, the result decrypts to the sum of the
corresponding plaintexts.
2. Multiplicative Homomorphism: Some AES-like ciphers
exhibit multiplicative homomorphic properties, preserving
multiplication operations on ciphertexts. When two
ciphertexts encrypted under the same key are multiplied
together, the result decrypts to the product of the
corresponding plaintexts.
 Key Components:
1. AES Encryption: Utilize the AES algorithm for encrypting
data or intermediate values within the homomorphic
encryption scheme. AES provides efficient and secure
encryption of data blocks.
2. Homomorphic Encryption Scheme: Incorporate a
homomorphic encryption scheme that supports the desired
homomorphic operations, such as addition and
multiplication, on the encrypted data. 3. Key Management:
Implement secure key management practices to ensure the
confidentiality and integrity of encryption keys used in both
AES and the homomorphic encryption scheme.
Applications :
 -Secure Outsourcing: Organizations can outsource
computational tasks to untrusted servers while safeguarding
data privacy using homomorphic AES-like ciphers. This
allows for secure cloud computing and data processing
without exposing sensitive information.
 -Secure Messaging: Homomorphic properties of AES-like
ciphers empower secure messaging applications to perform

operations on encrypted messages without decryption. This
enhances privacy and confidentiality in communication
channels.
 -Privacy-Preserving Machine Learning: Homomorphic
AES-like ciphers enable secure computation on encrypted
machine learning models and data. Multiple parties can
collaborate on machine learning tasks while preserving the
privacy of their sensitive information.
Challenges : Developing homomorphic properties in AES-
like ciphers presents challenges in security assurance,
computational efficiency, key management, and algorithmic
complexity. Balancing security with computational overhead,
securely managing cryptographic keys, and validating
complex algorithms are essential for realizing the potential of
homomorphic AES-like ciphers in enabling secure and
privacy-preserving computation.

VI. REAL-WORLD APPLICATIONS AND USE CASES
Homomorphic encryption schemes using AES can be applied
in various real-world scenarios across different domains.
Here are some examples:

Secure Outsourcing of Data Processing: Homomorphic
encryption allows computations to be performed on
encrypted data without decrypting it first. This is particularly
useful in scenarios where sensitive data needs to be processed
by untrusted third parties, such as cloud service providers.
For instance, a company could outsource data analytics tasks
to a cloud provider while keeping the data encrypted. The
cloud provider can perform computations on the encrypted
data using homomorphic encryption, preserving data privacy.

Healthcare Data Analysis: In healthcare, patient data is highly
sensitive and subject to strict privacy regulations.
Homomorphic encryption can enable secure data analysis on
encrypted medical records. For example, hospitals could
collaborate with research institutions to perform statistical
analysis on encrypted patient data without compromising
patient privacy.

Financial Data Analysis: Financial institutions deal with large
volumes of sensitive financial data that need to be analyzed
for various purposes such as risk assessment, fraud detection,
and customer profiling. Homomorphic encryption can be
used to securely analyze this data while keeping it encrypted,
thus ensuring confidentiality and compliance with
regulations like GDPR or PCI-DSS.

Secure Multi-Party Computation (SMPC): Homomorphic
encryption can facilitate secure multi-party computation
where multiple parties wish to jointly compute a function
over their inputs while keeping those inputs private. For
example, in a scenario where several organizations want to
calculate aggregate statistics from their individual datasets
without revealing the raw data, homomorphic encryption
enables this computation to be performed securely.

17

https://www.ijoa.ma/

IJOA ©2024

International Journal on Optimization and Applications

IJOA. Vol. 4, Issue No. 3, Year 2024, www.ijoa.ma

Copyright © 2024 by International Journal on Optimization and Applications

Privacy-Preserving Machine Learning: Homomorphic
encryption can also be used to train machine learning models
on encrypted data while preserving data privacy. This is
particularly relevant in situations where data owners are
concerned about sharing their sensitive data with third
parties. With homomorphic encryption, data can remain
encrypted throughout the training process, and only the
encrypted model parameters are shared or used for prediction.

Secure IoT Data Processing: With the proliferation of Internet
of Things (IoT) devices, there's a growing need to process
sensitive data collected from these devices while preserving
privacy. Homomorphic encryption can enable secure and
privacy-preserving data processing in IoT environments,
allowing for analysis and decision-making without exposing
raw sensor data to unauthorized parties.

Blockchain and Cryptocurrency: Homomorphic encryption
can enhance the privacy and confidentiality of transactions in
blockchain networks. By encrypting transaction data
homomorphically, participants can perform certain
operations on the encrypted data within smart contracts while
keeping the underlying transaction details
confidential.[1][2][3][4][5].

VII. THE CHALLENGES AND FUTURE DIRECTIONS
Homomorphic encryption, especially when based on AES
(Advanced Encryption Standard)5, holds great promise for
secure computation over encrypted data. However, several
challenges and opportunities for future research and
development remain in this field, however, several challenges
and opportunities for future research and development
persist.6

1. Performance Optimization: The primary challenge with
AES-based homomorphic encryption is the computational
overhead. AES is a symmetric encryption algorithm, and
performing homomorphic operations on encrypted data often
involves complex mathematical operations, which can lead to
significant computational costs. Future research should focus
on improving the performance of AES-based homomorphic
encryption schemes, in order to make them more practical for
real-world applications.

2. Security Analysis7: Although AES is a widely utilized
encryption standard that is renowned for its security, its

5 Garrison, G., Wakefield, R. L., & Kim, S. (2015). The
effects of IT capabilities and delivery model on cloud

computing success and firm performance for cloud
supported processes and operations. International Journal of

Information Management, 35, 377-393.
6 Zhang, D., Feng, G., Shi, Y., & Srinivasan, D. (2021).

Physical Safety and Cyber Security Analysis of Multi-Agent
Systems: A Survey of Recent Advances. IEEE/CAA Journal

of Automatica Sinica, 8, 319-333.

implementation in a homomorphic encryption context
introduces additional security considerations. In the future, it
is imperative to conduct comprehensive security analyses of
homomorphic encryption schemes based on AES in order to
guarantee that they offer the necessary levels of
confidentiality, integrity, and authenticity.

3. Scalability: As the volume of data increases, scalability
emerges as a crucial concern in homomorphic encryption.
Future research should examine methods to enhance the
scalability of AES-based homomorphic encryption schemes,
thereby enabling efficient computation over vast datasets
without compromising security or performance.

4. Homomorphic Operations Support: AES-based
homomorphic encryption schemes typically offer a restricted
range of homomorphic operations, such as addition and
multiplication. Future research should aim to broaden the
range of supported operations to facilitate more intricate
computations on encrypted data, thereby enhancing the utility
of homomorphic encryption in diverse domains.

5. Key Management8: An efficient key management system
is essential for the secure deployment of AES-based
homomorphic encryption schemes. Future research should be
focused on developing robust key management mechanisms
that can handle the complexities of homomorphic encryption
while ensuring the confidentiality and integrity of encryption
keys.[3][6]

6. Standardization and Interoperability: The
establishment of standards for AES-based homomorphic
encryption can facilitate interoperability and encourage
adoption across diverse platforms and applications. Future
research should prioritize standardization initiatives to
guarantee compatibility and ease of integration with existing
systems and protocols.

7. Hardware Acceleration: The utilization of specialized
hardware, such as secure enclaves or hardware accelerators,
can significantly enhance the performance of AES-based
homomorphic encryption schemes. Future research should
explore hardware-based approaches to accelerate
homomorphic computations while still maintaining security
guarantees.

7 Dobraunig, C., Grassi, L., Helminger, L., Rechberger, C.,
Schofnegger, M., & Walch, R. (2023). Pasta: A Case for

Hybrid Homomorphic Encryption. IACR Cryptology ePrint
Archive, 2023, 30-73

8 P, A., Sharma, A., Singla, A., Sharma, N., & V, D. G.
(2022). IoT Group Key Management using Incremental
Gaussian Mixture Model. In International Conference
Electronic Systems, Signal Processing and Computing

Technologies [ICESC-] (pp. 469-474).

18

https://www.ijoa.ma/

IJOA ©2024

International Journal on Optimization and Applications

IJOA. Vol. 4, Issue No. 3, Year 2024, www.ijoa.ma

Copyright © 2024 by International Journal on Optimization and Applications

8. Privacy-Preserving Machine Learning: Homomorphic
encryption has the potential to allow privacy-preserving
machine learning by allowing computations on encrypted
data. Future research should focus on developing AES-based
homomorphic encryption schemes for machine learning
applications, which would enable secure and privacy-
preserving model training and inference.[8]

9. Usability and Accessibility: The implementation and
utilization of AES-based homomorphic encryption is
imperative for its widespread adoption. Future research
should prioritize usability and accessibility by developing
user-friendly tools, libraries, and frameworks that will make
it easier for developers to integrate homomorphic encryption
into their applications.

10. Real-World Applications: Ultimately, it is imperative
to validate the practicality and efficacy of AES-based
homomorphic encryption in real-world applications in order
to facilitate its adoption. Research should focus on
demonstrating the feasibility and performance of
homomorphic encryption in various use cases, such as secure
outsourcing of computations, privacy-preserving data
analytics, and secure multiparty computation.

Exploring these future directions will contribute to the
advancement of AES-based homomorphic encryption and
pave the way for its widespread adoption in securing sensitive
data while enabling secure computation over encrypted
information. Addressing these challenges and advancing
AES-based homomorphic encryption techniques will be
crucial for broader adoption and seamless integration into
real-world scenarios.

VIII. CONCLUSION

In conclusion, this article explored the potential of
Homomorphic Encryption using the established Advanced
Encryption Standard (AES) algorithm. We delved into the

fundamentals of this approach, examining various techniques
for performing computations on encrypted data with AES. By
showcasing real-world applications and use cases, we've
highlighted the transformative potential of this technology in
areas like cloud computing and secure data analysis.
However, challenges remain, such as computational
overhead and limited operation support. As research
progresses, overcoming these hurdles will unlock the full
potential of AES-based Homomorphic Encryption, paving
the way for a future where data security and usability coexist
seamlessly.

REFERENCES
[1] Gentry, C. (2009). A fully homomorphic encryption scheme. Ph.D.
Dissertation, Stanford University. . (n.d.).
[2] Chen, B., Wang, Y., Zhang, Y., & Yang, J. (2014). Efficient privacy-
preserving biometric identification based on homomorphic encryption. In
Information Security and Cryptology - ICISC 2014 (pp. 98-112). Springer,
Cham. . (n.d.).
[3] Dijk, M. Van, Gentry, C., Halevi, S., Vaikuntanathan, V. (2010). Fully
homomorphic encryption over the integers. In Advances in Cryptology –
EUROCRYPT 2010 (pp. 24-43). Springer Berlin Heidelberg. (n.d.).
[4] Smart, N. P. (2013). Fully homomorphic encryption with relatively small
key and ciphertext sizes. In Advances in Cryptology – EUROCRYPT 2013
(pp. 340-357). Springer Berlin Heidelberg. (n.d.).
[5] Juels, A., & Ristenpart, T. (2014). Honey encryption: Security beyond
the brute-force bound. In Advances in Cryptology – EUROCRYPT 2014
(pp. 293-310). Springer Berlin Heidelberg. (n.d.).
[6] Bogetoft, P., Christensen, D., Damgård, I., & Geisler, M. (2012). Secure
multiparty computation goes live. In Advances in Cryptology –
EUROCRYPT 2012 (pp. 325-342). Springer Berlin Heidelberg. (n.d.).
[7] Henecka, W., & Pohl, H. (2010). Privacy-preserving data analysis on
grids. In Proceedings of the 2010 ACM workshop on Cloud computing
security workshop (pp. 19-30). (n.d.).
[8] Bost, R., Popa, R. A., Tu, S., Goldwasser, S., & Boneh, D. (2015).
Machine learning classification over encrypted data. In 2015 IEEE
Symposium on Security and Privacy (pp. 1-17). IEEE. (n.d.).
[9] Goldwasser, S., & Rothblum, G. N. (2008). How to compute on
encrypted data. In Advances in Cryptology – CRYPTO 2008 (pp. 276-293).
Springer Berlin Heidelberg. . (n.d.).

19

https://www.ijoa.ma/

IJOA ©2024

International Journal on Optimization and Applications

IJOA. Vol. 4, Issue No. 3, Year 2024, http://www.ijoa/ma

Copyright © 2024 by International Journal on Optimization and Applications

 IDEA Cipher :
Study of methods to strengthen the algorithm –

Hybrid Encryption

1st Saad ETTOUAHRI

ENSA – Kenitra

saad.ettouahri@uit.ac.ma

4th Achraf RAHIME

ENSA – Kenitra

rahimeachraf0@gmail.com

2nd Ayoub ELBAHI

ENSA – Kenitra

ayoub.elbahi3@uit.ac.ma

5th Abderrahmane BOUHIR

ENSA – Kenitra

abderrahmane.bouhir@uit.ac.ma

3rd Raliya OMAR

ENSA – Kenitra

ralia.omarismail@uit.ac.ma

Abstract— IDEA Cipher Hybridization with AES as a
strengthening method.

The field of cryptography plays a crucial role in ensuring
the security and confidentiality of sensitive information
transmitted over networks. In recent years, there has been a
growing interest in developing more robust and efficient
encryption algorithms. This article proposes a novel approach
by hybridizing the IDEA (International Data Encryption
Algorithm) and AES (Advanced Encryption Standard)
algorithms to create a unified ciphering algorithm.

The IDEA algorithm is known for its strong security and
efficient performance, while AES is widely recognized as a
highly secure and widely adopted encryption standard. By
combining the strengths of both algorithms, the proposed
hybrid algorithm aims to provide enhanced security and
improved performance.

The hybridization process involves integrating the key
generation, substitution, permutation, and diffusion
techniques of IDEA and AES. This fusion allows for the
creation of a unified ciphering algorithm that leverages the
best features of both algorithms, resulting in a more robust
and secure encryption method.

The article presents a detailed analysis of the hybrid
algorithm, including its structure, key generation process, and
encryption/decryption procedures. Additionally, the
performance of the hybrid algorithm is evaluated through
various metrics such as encryption speed, key sensitivity, and
resistance to known attacks.

The results of the study demonstrate that the hybrid
algorithm achieves a higher level of security compared to

individual IDEA and AES algorithms. Furthermore, it
exhibits improved performance in terms of
encryption/decryption speed and resistance to known attacks.

In conclusion, the hybridization of IDEA and AES as a
unified ciphering algorithm offers a promising approach to
enhance the security and efficiency of encryption techniques.
The proposed algorithm provides a robust solution for
protecting sensitive information in various applications,
including data transmission over networks and secure
storage.

Keywords—IDEA, AES, Encryption, Strengthening.

I. INTRODUCTION
The IDEA cipher, also known as the International Data

Encryption Algorithm, is a symmetric-key block cipher that
was first introduced in 1991. It was designed to provide secure
encryption for digital data and has been widely used in various
applications such as secure communications, financial
transactions, and electronic voting systems.

IDEA uses a block size of 64 bits and a key size of 128
bits. It employs a series of mathematical operations, including
modular arithmetic, bit shifting, and exclusive OR (XOR)
operations, to transform the plaintext into ciphertext. The
cipher is designed to be highly secure and resistant to various
types of attacks, including differential and linear
cryptanalysis.

One of the strengths of IDEA is its efficient
implementation in software and hardware. The algorithm is
relatively fast and requires only a small amount of memory
and processing power, making it suitable for use in embedded
systems and other resource-limited applications.

20

http://www.ijoa/ma

IJOA ©2024

International Journal on Optimization and Applications

IJOA. Vol. 4, Issue No. 3, Year 2024, http://www.ijoa/ma

Copyright © 2024 by International Journal on Optimization and Applications

While IDEA is considered to be a highly secure and
effective encryption algorithm, there are ways to reinforce the
security further.

The article titled "IDEA Cipher: Study of Methods to
Strengthen the Algorithm" focuses on exploring different
approaches to enhance the security and strength of the IDEA
Cipher. It delves into the analysis of the existing algorithm and
proposes methods to reinforce its resistance against potential
attacks and vulnerabilities.

The main objective of the article is to evaluate the current
state of the IDEA Cipher and identify potential weaknesses
that could be exploited by attackers. By studying the
algorithm's design and implementation, the article aims to
propose practical and effective techniques to strengthen its
security.

The article may cover various topics related to
strengthening the IDEA Cipher, including:

1. Analysis of the IDEA cipher's mathematical operations and
their impact on security.
2. Exploration of potential vulnerabilities and weaknesses in
the algorithm.
3. Examination of existing attacks and their effectiveness
against the IDEA Cipher.
4. Proposal of new cryptographic techniques or modifications
to the algorithm to enhance its security.
5. Evaluation of the proposed enhancements through
theoretical analysis and practical experiments.
By studying the methods to strengthen the IDEA cipher, the
article aims to contribute to the field of cryptography and
provide valuable insights for researchers, practitioners, and
developers working with encryption algorithms.

Furthermore, there can be a viable strengthening method
using a combination of two already relatively strong
algorithms such as IDEA & AES.
Being the most recent and considered being the strongest,
AES alone can provide a worldwide acknowledged level of
security. Using it in the hybridization of the IDEA algorithm
might inquire the use of the same 128 bits key for both
algorithms, but will for sure result in an enhanced security
measure compared to the implementation of IDEA cipher by
itself.

II. SYMETRIC-KEY ALGORITHM

An algorithm for cryptography that uses the same key for
both encryption and decryption is known as a symmetric key
algorithm.
The many parties who wish to maintain some confidential
information share this key as a shared secret.

Definition: "Take into consideration an encryption scheme
that consists of the sets of transformations for encryption and
decryption, respectively, {Eₑ: e ∈ K} and {Dd: d ∈ K}, where
K is the key space. When it is computationally "easy" to find
d from e and to determine e from d for any related

encryption/decryption key pair (e, d), the encryption
technique is said to be symmetric-key.

The name "symmetric-key" becomes suitable as most
realistic symmetric-key encryption methods have e = d.
Additional terminology found in the literature include
conventional encryption, one-key, private-key, and single-
key encryption."

Symmetric key algorithms come in two varieties:
• Stream ciphers: encrypt a message's digits, or generally its
bytes, one at a time.
• Block ciphers: these encrypt multiple bits as a single unit,
padding the plaintext to be greater than the block size.

III. GRAMMAR AND ACRONYMS

Block ciphers are encryption schemes that encrypt one block
at a time by segmenting the plaintext messages to be
delivered into strings, or blocks, of a given length t over an
alphabet A.
Definition: An encryption function that specifies a block
cipher receives a bit string P of length n, known as the block
size, and a key K of bit length k, or the key size, as inputs,
and outputs a string C with n bits. C is referred to as the
ciphertext, whereas P is known as the plaintext. The function
Ek(P) must be an invertible mapping on {0, 1}n for all K.

Ek(P) := E(K, P) : {0, 1}k × {0, 1}n → {0, 1}n
The inverse for E is defined as a function

Ek-1(C) := Dk(C) = D(K, C) : {0, 1}k × {0, 1}n → {0, 1}n
Taking a key K and a ciphertext C to return a plaintext value
P, such that

∀K : Dk(Ek(P)) = P
Ek is a permutation (a bijective mapping) over the set of input
blocks for each key K. From the possible set of (2n)!
permutations, each key chooses one.

Statistical investigation suggests that a block cipher that has
an excessively small block size n could be subject to attacks.
A basic frequency analysis of the ciphertext block is an
example of such attack. But, using a blocksize n that is too
high could cause problems because many ciphers'
implementation complexity increases quickly with block
size.

IV. OPERATION MODES

An algorithm known as a mode of operation encrypts
messages of any length with a block cipher to ensure
confidentiality or authenticity. Only one fixed-length group
of bits can be securely transformed (encrypted or decrypted)
using a block cipher on its own.
Known as a block. A mode of operation explains how to
safely convert amounts of data bigger than a block by
continually using a cipher's single-block operation.

- ECB mode: Electronic Codebook
ECB is the most simple encryption mode, it divides the text
into two blocks and encrypts each one of them separately.
Input: k-bit key K;

21

http://www.ijoa/ma

IJOA ©2024

International Journal on Optimization and Applications

IJOA. Vol. 4, Issue No. 3, Year 2024, http://www.ijoa/ma

Copyright © 2024 by International Journal on Optimization and Applications

 n-bit plaintext blocks x1, …, xt.
Produce ciphertext blocks c1, …,ct; decrypt to recover
plaintext.

1. Encryption: for 1 ≤ i ≤ t, cj ← Ek (xj).
2. Decryption: for 1 ≤ i ≤ t, xj ← Ek-1(cj).

The problem with this algorithm is that the block of identical
text are encrypted into identical ciphertext blocks, which
creates noticeable patterns.

Figure 4.1

- CBC mode: Cipher Block Chaining

In this operation mode, each block of plaintext along with the
previous Ciphertext that has been encrypted are subject to an
XOR operation, creating a dependency of each ciphertext
block on all plaintext blocks previously processed.
Input: k-bit key K;
 n-bit IV;
 n-bit plaintext blocks x1, …, xt.
Produce ciphertext blocks c1, …,ct; decrypt to recover
plaintext.

1. Encryption c0 ← IV. For 1 ≤ j ≤ t, cj ← Ek (cj-1 ⊕ xj).
2. Decryption c0 ← IV. For 1 ≤ j ≤ t, xj← cj-1 ⊕ Ek-1(cj).

The drawback can be the fact that the encryption method is
sequential creating a padding of a message that is a multiple
of the cipher block size.

Figure 4.2

- CFB mode: Cipher Feedback

CFB mode is required for some applications that are delay
sensitive and which require that r-bit plaintext units be
encrypted and transmitted without delay for a fixed r < n (r
= 1 or r = 8).
Input: k-bit key K;
 n-bit IV;

 r-bit plaintext blocks x1, …, xu (1 ≤ r ≤ n).
Produce ciphertext blocks c1, …,ct; decrypt to recover
plaintext.

1. Encryption: I1 ← IV. (Ij is the input value in a shift
register). For 1 ≤ j ≤ u:
(a) Oj ← Ek (xj). (Processes the output block cipher).
(b) tj ← the r leftmost bits of Oj. (Assume the
leftmost is identified as bit 1).
(c) cj ← xj ⊕ tj. (Transmit the r-bit ciphertext block
cj).
(d) Ij+1 ← 2r. Ij + cj mod 2n. (Shift cj into right end of
shift register).

2. Decryption: I1 ← IV. For 1 ≤ j ≤ u, upon receiving
cj:
xj ← cj ⊕ tj , where tj , Oj and Ij are processed as
above.

Figure 4.3

- OFB mode: Output Feedback

An asynchronous stream cipher can be created from a block
cipher using the Output Feedback (OFB) mode. The
ciphertext is obtained by XORing the keystream blocks that
are produced with the plaintext blocks. Similar to other types
of stream ciphers,
When a bit in the ciphertext is flipped, the corresponding bit
in the plaintext is also flipped. Many error-correcting codes
can operate normally even when applied before encryption
thanks to this trait.
Input: k-bit key K;
 n-bit IV ;
 r-bit plaintext blocks x1, ..., xu (1 ≤ r ≤ n).
Produce ciphertext blocks c1, ..., cu ; decrypt to recover
plaintext.

1. Encryption: I1 ← IV. For 1 ≤ j ≤ u, given plaintext
block xj :
(a) Oj ← Ek(Ij). (Processes the output block cipher).
(b) tj ← the r leftmost bits of Oj. (Assume the
leftmost is identified as bit 1).
(c) cj ← xj ⊕ tj . (Transmit the r-bit ciphertext block
cj).
(d) Ij+1 ← Oj. (Update the block cipher input for the
next block).

2. Decryption: I1 ← IV. For 1 ≤ j ≤ u, upon receiving
cj : xj ← cj ⊕ tj , where tj , Oj and Ij are computed as
above

22

http://www.ijoa/ma

IJOA ©2024

International Journal on Optimization and Applications

IJOA. Vol. 4, Issue No. 3, Year 2024, http://www.ijoa/ma

Copyright © 2024 by International Journal on Optimization and Applications

Figure 4.4

V. METHODOLOGY OVERVIEW : HYBRID ENCRYPTION-
IDEA & AES

In this methodology, we will explain the proceedings of
ciphering with the IDEA (International Data Encryption
Algorithm) and then using the same 128 bits key to cipher
with AES (Advanced Encryption Standard). Both IDEA and
AES are symmetric encryption algorithms that use the same
key for encryption and decryption.

1. IDEA Algorithm:
The IDEA algorithm is a block cipher that operates on 64-bit
blocks of data.
It uses a 128-bit key for encryption and decryption. The
following steps outline the ciphering process with IDEA:
a. Key Generation: Generate a 128-bit key that will be used
for both IDEA and AES encryption.
b. Data Preparation: Divide the plaintext into 64-bit blocks.
c. Initial Permutation: Perform an initial permutation on each
64-bit block of plaintext.
d. Round Function: Perform a series of 8 rounds, each
consisting of the following steps:
 i. Substitution: Substitute bytes using a substitution table.
 ii. Permutation: Permute the bytes within each 16-bit half-
block.
 c. Mixing: Mix the bytes using modular addition and
multiplication operations.

e. Final Permutation: Perform a final permutation on each 64-
bit block of ciphertext.
f. Output: The resulting ciphertext is obtained.

2. AES Algorithm:
The AES algorithm is a block cipher that operates on 128-bit
blocks of data. It also uses a 128-bit key for encryption and
decryption. The following steps outline the ciphering process
with AES:
a. Key Expansion: Expand the 128-bit key into a set of round
keys using a key schedule.
b. Data Preparation: Divide the plaintext into 128-bit blocks.
c. Initial Round: Perform an initial round of transformations
on each 128-bit block of plaintext using the round key.
d. Rounds: Perform a series of 10, 12, or 14 rounds
(depending on the key size), each consisting of the following
steps:

 i. SubBytes: Substitute bytes using a substitution table.
 ii. ShiftRows: Shift the rows of the state matrix.
 iii. MixColumns: Mix the columns of the state matrix.
 iv. AddRoundKey: XOR the state matrix with the round
key.

e. Final Round: Perform a final round of transformations on
each 128-bit block of ciphertext using the round key.

VI. IDEA CIPHER
With a 128-bit input key K, the IDEA cipher encrypts 64-bit
plaintext blocks to 64-bit ciphertext blocks. It consists of 8
computationally identical rounds, sort of like a novel
generalization of the Feistel structure, followed by a
transformation of the output. In round r, a 64-bit input X is
converted into an output of four 16-bit blocks, which are eight
inputs for the following round, using six 16-bit subkeys Ki(r),
1 ≤ i ≤ 6.
After the round 8 output is entered into the output
transformation, the final ciphertext, Y = (Y1, Y2, Y3, Y4), is
produced by using four further subkeys, Ki(9), 1 ≤ i ≤ 4. The
same algorithm is used for both encryption and decryption.
K serves as the source of all subkeys.
In IDEA, combining operations from three distinct algebraic
groups of 2n elements is a prominent design idea.

The group operations that correspond to them on sub-blocks
a and b with bitlength n = 16 are as follows:

- a ⊕ b: bitwise XOR.
- a [+] b: addition mod 2n : (a + b) AND 0xFFFF.
- a [*] b: (modified) multiplication mod 2n + 1, with 0

∈ Z2n associated with 2n ∈ Z2n+1.
In each round, the sequence of events is as follows:

1. Multiply X1 and the first subkey.
2. Add X2 and the second subkey.
3. Add X3 and the third subkey.
4. Multiply X4 and the fourth subkey.
5. XOR the results of steps (1) and (3).
6. XOR the results of steps (2) and (4).
7. Multiply the results of step (5) with the fifth subkey.
8. Add the results of steps (6) and (7).
9. Multiply the results of step (8) with the sixth subkey.
10. Add the results of steps (7) and (9).
11. XOR the results of steps (1) and (9).
12. XOR the results of steps (3) and (9).
13. XOR the results of steps (2) and (10).
14. XOR the results of steps (4) and (10).

The output of the round is the four fragment blocks that are
the results of steps (11), (12), (13), and (14).
Swap the two internal blocks (except for the last round) and
that is the input to the next round.
After the eighth round, there is a final output transformation:

1. Multiply X1 and the first subkey.
2. Add X2 and the second subkey.
3. Add X3 and the third subkey.

23

http://www.ijoa/ma

IJOA ©2024

International Journal on Optimization and Applications

IJOA. Vol. 4, Issue No. 3, Year 2024, http://www.ijoa/ma

Copyright © 2024 by International Journal on Optimization and Applications

4. Multiply X4 and the fourth subkey.

Finally, the four sub-blocks are reattached to produce the
ciphertext.
The following chart resumes the IDEA cipher encryption
process:

Figure 6.1

VII. AES CIPHER

AES (Advanced Encryption Standard), is an algorithm for
block encryption standardized by NIST in 2001, in order to
replace DES and 3DES.

The size of an AES block is 128 bits, whereas the size of
the encryption key can be 128, 192 or 256. But for the sake of
our research purposes we’re going to focus on the 128 bits key
encryption that we will previously use in the IDEA algorithm.

Block cipher algorithms should enable encryption of the
plaintext with size which is different from the defined size of
one block as well. We can use some algorithms for padding
block when the plaintext is not enough a block, like PKCS5 or
PKCS7, it also can defend against PA attack, if we use ECB
or CBC mode. Or we can use the mode of AES which support
a stream of plaintext, like CFB, OFB, CTR mode.

In PKCS5Padding, arbitrary data lengths are accepted; the
ciphertext will be padded to a multiple of 8 bytes, as described
in PKCS#5. The decryption process will remove the padding
from the data so that the correct plaintext is returned. This
Cipher will accept a javax.

PKCS#5 padding is identical to PKCS#7 padding, except
that it has only been defined for block ciphers that use a 64-bit
(8-byte) block size. In practice, the two can be used
interchangeably. The maximum block size is 255, as it is the
biggest number a byte can contain.

 The five modes of AES.

• ECB mode: Electronic Code Book mode
• CBC mode: Cipher Block Chaining mode
• CFB mode: Cipher FeedBack mode
• OFB mode: Output FeedBack mode
• CTR mode: Counter mode

As previously detailed in the IDEA chapter, these block
cipher operation modes guarantee a secure encryption.
Starting from the top of the list as we go down, their
efficiency and complexity goes up for more security.

The attack modes that are considered subject to counter-
measures in AES

• PA: Padding attack
• CPA: Chosen Plaintext Attack
• CCA: Chosen Ci

The algorithm go through multiple rounds of substitution and
permutation for each block, then concatenate everything.
There are multiple modes of operation as mentioned in the last
paragraph. In this article we are going to focus on the ECB
mode (the simplest one)

The ECB (Electronic Code Book) mode is the simplest of
all. Due to obvious weaknesses, it is generally not
recommended, it is used here for demonstration purposes
only.

The length of an AES block, 128 bytes, is the division of the
plaintext into blocks. In order to make the data equal to the
block length, the ECB mode must pad the data. Subsequently,
each block will undergo encryption using an identical key and
technique. Thus, we will have the same ciphertext if we
encrypt the same plaintext. Thus, this approach carries a
considerable risk. There is a one-to-one correlation between
the plaintext and ciphertext blocks. We can encrypt and
decrypt the data simultaneously since the encryption and
decryption processes are independent. Furthermore, breaking
one block of plaintext or ciphertext won't impact other
blocks.

An attack can be launched even if they are unable to obtain
the plaintext thanks to an ECB feature.

For example, if we encrypt the data about our bank account,
like this: The ciphertext: C1 (account number): 21 33 4e 5a
35 44 90 4b, and C2 (The password): 67 78 45 22 aa cb d1 e5
the data can be copied in C1 to C2. Then the system can be
logged in with the account as with the password which is
easier to get.

Plaintext

24

http://www.ijoa/ma

IJOA ©2024

International Journal on Optimization and Applications

IJOA. Vol. 4, Issue No. 3, Year 2024, http://www.ijoa/ma

Copyright © 2024 by International Journal on Optimization and Applications

P1

….

C1

Cipher

Figure 7.1

The AES consist of four basic operations that are repeated
over N rounds. These four operations are ADDING,
SUBSTITUTING, SHIFTING, and MIXING, being done
while the key is expanded with different bitwise rotations to
maximize its use and for it to be sufficient for the completion
of the encryption.

Block of 128 bits

Add Round Key

Substitute

Shift Rows

Mix Columns

Repeat

Block of 128 bits
Figure 7.2

A more detailed representation of the AES algorithm rounds
would give us the following diagram:

Figure 7.3

VIII. FINAL OUTPUT
The final output of the hybridization of IDEA and AES cipher
using a 128-bit encryption key would result in a secure and
robust encryption of the data.
1. Hybrid Encryption Approach:
 - The hybrid encryption combines the strengths of both
IDEA and AES ciphers to ensure a high level of security.
 - In the hybrid approach, a secret key is generated, and the
data is encrypted using IDEA then AES with the same secret
key.
 - The encrypted secret key and the encrypted data are sent
together to the secure recipient of choice.

2. Final Output:
 - The final output of the hybridization of IDEA and AES
cipher using a 128-bit encryption key is a combination of the
encrypted secret key and the encrypted data.
 - The encrypted data is obtained by encrypting the original
data using IDEA & AES and the secret key.
 - These two components are combined and sent to the
recipient as a single package.

3. Security Considerations:
 - The hybrid approach provides a strong level of security by
combining the strengths of both IDEA and AES ciphers.

Encrypt k k

KEY

25

http://www.ijoa/ma

IJOA ©2024

International Journal on Optimization and Applications

IJOA. Vol. 4, Issue No. 3, Year 2024, http://www.ijoa/ma

Copyright © 2024 by International Journal on Optimization and Applications

 - IDEA and AES are widely recognized and trusted
encryption algorithms, with AES being particularly robust
and resistant to brute-force attacks
 - The use of a 128-bit encryption key ensures a high level
of security for the encrypted data.
 - The encryption of the secret key using RSA will surely
add an additional layer of security, ensuring that only the
intended recipient can decrypt the data.

In summary, the final output of the hybridization of IDEA
and AES cipher using a 128-bit encryption key is a
combination of the encrypted secret key and the encrypted
data. This approach provides a strong level of security and
ensures the confidentiality of the transmitted data.

 The following diagram resumes the process of the
combination of both algorithms:

Figure 8.1

IX. CONCLUSION
The hybridization of two Cipher algorithms is one of the

main solutions that can provide stronger security and
produces ciphertexts that are more complex and approach a
sense of immunity to the majority of external threats.

IDEA cipher is one of the strongest encryption algorithms
available, combining it with AES, which is the most recent
and also the strongest to date, insures a stronger security
stance when it comes to protecting sensitive data and
communications.

Using the IDEA cipher output as an input for the AES
cipher can provide an additional layer of security and solidify
the encryption process.

As detailed in the article, the IDEA cipher is a symmetric
key block cipher algorithm that operates with a block size of
64 bits and a key length of 128 bits. It is known for its strong
encryption capabilities and has been widely used in various

applications. However, to further enhance the security of the
encryption, it is possible to use the output of the IDEA cipher
as the input for the AES cipher also known as Rijndael, is
another popular symmetric key block cipher algorithm. It
operates with a block size of 128 bits and supports key
lengths of 128, 160, 192, 224, and 256 bits. AES is highly
secure and widely used in secure communication protocols
such as TLS and SSL.

By using the output of the IDEA cipher as the input for
the AES cipher, we can leverage the strengths of both
algorithms and create a more robust encryption scheme. This
approach adds an extra layer of complexity and makes it even
more difficult for an attacker to decrypt the data without the
proper keys.

To implement this process, the output of the IDEA cipher
can be treated as the plaintext input for the AES cipher. The
AES cipher will then encrypt this input using its own
encryption algorithm and produce the final ciphertext. This
combined encryption process can provide a higher level of
security and make it more challenging for unauthorized
individuals to access the original data.

It is important to note that the security of the encryption
scheme also depends on the key management and secure
transmission of the keys between the sender and the receiver
(which can give the introduction to another security measure
in the RSA key encryption solution). Proper key generation,
storage, and exchange protocols should be implemented to
ensure the overall security of the system.

X. GRAMMAR AND ACRONYMS

A. Abbreviations and Acronyms
IDEA: International Data Encryption Algorithm

AES: Advanced Encryption Standard

DES /3DES: Data Encryption Standard

ECB: Electronic Code Book mode

CBC: Cipher Block Chaining mode

CFB: Cipher Feedback mode

OFB: Output Feedback mode

CTR: Counter mode

PKCS5/S7: Public Key Cryptography Standard(Standard 5&7)

TLS: Transport Layer Security

SSL: Secure Socket Layer

B. Units
Bits.
Bytes (= 8bits).

C. Figures and Tables
Figure 4.1 – ECB operation mode
Figure 4.2 – CBC operation mode

26

http://www.ijoa/ma

IJOA ©2024

International Journal on Optimization and Applications

IJOA. Vol. 4, Issue No. 3, Year 2024, http://www.ijoa/ma

Copyright © 2024 by International Journal on Optimization and Applications

Figure 4.3 – CFB operation mode
Figure 4.4 – OFB operation mode
Figure 6.1 – IDEA Cipher rounds diagram
Figure 7.1 – ECB simplified diagram
Figure 7.2 – AES simplified diagram
Figure 7.3 – AES Cipher rounds diagram
Figure 8.1. – IDEA & AES implementation diagram

REFERENCES
[1] Z. Alimzhanova, M. Skublewska-Paszkowska, D. Nazarbayev

Structural Periodicity of the Substitution Box in the CBC Mode of
Operation: Experiment and study, in : IEEE Access, Vol 11, 2023.

[2] K. Patula, P. Gundabathina, Implementation of High Speed Modulo
(2n+1) Multiplier for IDEA Cipher, Scopus, Procedia Computer
Science, Vol 171, Pages 2016- 2022, 2020.

[3] B. Schneier, The IDEA encryption algorithm, Journal USA, 18(13),
Page 50, 1993.

[4] S. Basu, International Data Encryption Algorithm (IDEA) – A Typical
Illustration, ResearchGate, Journal of Global Research In Computer
Science, Volume 2, No.7, 2011.

[5] W. Meier, On the Security of IDEA block Cipher, Scopus, Lecture
Notes in Computer Science, LNCS, volume 765, pages 371 – 385,
1994.

[6] F. Nuraeni, Y.H. Agustin, The Implementasi Caesar Cipher &
Advanced Encryption Standar (AES) Papa Pengamanan Data Pajak
Bumi Bangunan, ResearchGate, Jurnal llmiah Matrik 22(2), Pages 187-
194, 2020.

[7] N.H.M. Ali, A.M.S. Rahma, A.M. Jaber, S. Yousef, A Byte-Oriented
Multi Keys Shift Rows Encryption and Decryption Cipher Processes in
Modified AES, ResearchGate, International Journal of Scientific and
Engineering Research 5(4), Pages 953-955, 2014.

27

http://www.ijoa/ma

International Journal on Optimization and Applications

IJOA. Vol. 4, Issue No. 3, Year 2024, http://www.ijoa.ma/

Copyright © 2024 by International Journal on Optimization and Applications

JOA ©2024

Security analysis of RSA algorithm:
vulnerabilities and countermeasures

1st Mina Zouhal 2nd Sihame Bacime 3rd Kaoutar EL hachimi
Dept. Informatique Dept. Informatique Dept. Informatique

ENSAK KENITRA,Morocc ENSAK KENITRA,Morocc ENSAK KENITA,Morocco
mina.zouhal@uit.ca.ma sihame.bacime@uit.ca.ma kaoutar.elhachimi@uit.ca.ma

Abstract—Cryptography is divided into two types,
namely symmetric cryptography and asymmetric
cryptography. In asymmetric cryptography, the
encryption and decryption processes have their
keys. This article provides a clear overview of the
RSA algorithm's security vulnerabilities, with a
specific focus on issues related to key management.
It highlights the critical role that secure key
management in RSA implementations by looking at
issues including weaknesses during key
distribution, unsafe storage techniques, and faults in
key creation. The paper highlights the dangers

associated with compromised keys and looks at
doable methods to improve key security, such as
strong encryption techniques and stringent access
control protocols. The purpose of this article is to
clarify the significance of proactive key
management procedures in supporting the overall
security posture of cryptographic systems based on
RSA.
KEYWORDS—RSA, ECC, GF(2m),
Cryptography System, Hybrid System,
Combination between RSA and ECC,
Cooperation RSA with ECC

I. Introduction
In the realm of digital communication and

encryption, the RSA algorithm, created by three
founders (Ronald, Shamir, and Adleman) in 1977,
is included in asymmetric encryption, which means
it operates with two keys: one for encryption called
the public key, and one for decryption called the
private key. It is used in E-commerce, and also in
confidential data exchange. The RSA algorithm
protects data transmission, is a secure algorithm,
and can be used in digital signatures (using two
keys), and also in key exchange. RSA keys are
typically 1024 or 2048 bits long, but experts believe
that 1024-bit keys could be broken in the near
future.
Despite these advantages, there are some of

problems that can limit the use of RSA in some
cases, specifically, the size of keys in the RSA
system, which is critical to ensuring communication
Security. Keys that are too small make encryption
vulnerable to brute force and factorization attacks,
weakening security levels. With technological
advancements, attackers can exploit advanced

computing capabilities to accelerate the process of
breaking RSA keys. To ensure adequate security, it
is recommended to use RSA keys with a minimum
size of 2048 bits, following current security
standards and anticipating technological advances,
in our article we are going to discuss the problem of
key length because the algorithm’s strength
depends on the key size. Thus RSA relies on the
length of its keys to make them difficult to crack.
We can summarize this by saying that” longer RSA
keys are more secure and harder to hack than short
ones.
We propose a solution, which is involves linking

ECC with the RSA algorithm, to address the key
size problem in RSA and highlight some of the
hurdles that need to be overcome for these solutions
to be successful. By the end of this essay, readers
will have a better understanding of the solution
regarding the key size in RSA, as well as the
difficulties and opportunities associated with its
implementation.

II. Algorithm RSA
A. Definition :
The RSA algorithm Known by the names of its

three creators, Rivest, Shamir, and Adleman, the
RSA algorithm is a popular asymmetric
cryptographic for safe data transfer. It encrypts and
decrypts data using a public key and a private key.
Every participant in RSA creates a pair of keys: a
private key that needs to be kept private and a
public key that may be shared freely.

Usually, encryption uses the public key while
decryption uses the private key.
RSA can be used in a variety of cryptographic
applications, including key exchange protocols,
digital signatures, and secure communication. Large
integer factorization is hard, which is the
foundation of its cryptographic strength and ensures
security. In this article we will explain how RSA
does it work, we will mention an essential part

28

http://www.ijoa.ma/
mailto:mina.zouhal@uit.ca.ma
mailto:sihame.bacime@uit.ca.ma

International Journal on Optimization and Applications

IJOA. Vol. 4, Issue No. 3, Year 2024, http://www.ijoa.ma/

Copyright © 2024 by International Journal on Optimization and Applications

JOA ©2024

which is security of RSA his vulnerabilities and how can we solve this vulnerabilities.

B. How does the RSA work?

1. Generating -private key pair in RSA:

The process of creating a secure public-private key
pair in RSA requires multiple steps that need to be
taken:
i. Selection of Prime Numbers:
The first step in key generation is to select two

distinct prime numbers, typically denoted as p and
q. These primes are chosen to be large enough to
resist factorization attacks.

ii. Computation of RSA Modulus:

Once the prime numbers p and q are selected, the

RSA modulus, n, is computed as the product of
these primes: n = p * q. The modulus n serves as
the core parameter of the RSA algorithm and is
included in both the public and private keys. The
security of RSA dependent in the computational
complexity of factoring n back to its main
components, p and q.

iii. Compute Euler's totient
function ϕ(n):

ϕ(n)=(p−1) ×(q−1). This function gives the

number of positive integers less than n that are
relatively prime to n.
iv. Selection of Public Exponent:
After calculating n, a public exponent, often

denoted as e, is chosen. This exponent must be co-
prime to ϕ(n) and 1<e< ϕ(n), ensuring that it does
not share any factors with (p-1)(q-1) except for 1.
A common choice for the public exponent is 65537
(2^16 + 1), as it has desirable cryptographic
properties and speeds up the encryption and
decryption operations.
The public key consists of the modulus n and the
public exponent e. It is used for encryption (n, e).
The private exponent, d, is calculated such that d ×
e ≡ 1 (mod ϕ(n)). In other words, d is the modular
multiplicative inverse of e modulo ϕ(n).
The private key consists of the modulus n and the
private exponent d. It is used for decryption (d,n).
2. Key Distribution:
RSA eliminates the need for a secure channel for

key exchange, a requirement in symmetric key
algorithms, by employing asymmetric encryption.
Users only need to share their public keys openly.
Recipients use their private keys for decryption.
This approach simplifies key distribution, making it
suitable for various applications. The public key (n,

e) is openly distributed, while the private key (d,n)
is kept secret.

3. Encryption and Decryption:
Encryption:
To encrypt a message M using RSA, the sender

obtains the recipient's public key (N, e). The
plaintext message M, represented as an integer
smaller than n (0 ≤ m < n)
undergoes modular exponentiation with the public
exponent e: C ≡ M^e (mod N).
The resulting ciphertext, C, is transmitted securely
to the recipient.

Decryption:

Upon receiving the ciphertext C, the recipient

applies their private key (d,n) to recover the
original message M. Decryption is performed using
the equation: M ≡ C^d (mod N).
The recipient can then retrieve the plaintext
message M from the decrypted ciphertext.[3]

C. The advantages RSA

The RSA algorithm is used in cryptography for its
Security and privacy benefits. We discuss some
important advantages of the RSA algorithm against
vulnerabilities and countermeasures.
Even if factorization techniques are advancing

quickly, modern data encryption systems will stay
secure as long as it is difficult to break down
numbers longer than 100 digits into first form. We
begin by listing our advantages.
Resistance to factorization attacks : One of the main
advantages of RSA is its resistance to factorization
of large primes. Attacks aimed at factoring prime
numbers used in RSA, such as Lenstra's general
polynomial number factorization algorithm, are
only effective for relatively Small key sizes. To
counter this, using RSA keys of sufficiently large
size makes these attacks impraticable.
To explain this additional advantage based on the

resistance of RSA to factoring attacks, by
highlighting the underlying mathematical issues
which represent in the Complexity of factoring
large primes : RSA is based on the principle that
factoring a large number into products of primes is
a difficult problem. More precisely, the RSA
algorithm exploits the difficulty in factoring the
product of two large prime numbers to find the
original prime numbers. This difficulty is due to the
lack of efficient factorization algorithms for large
numbers.

29

http://www.ijoa.ma/

International Journal on Optimization and Applications

IJOA. Vol. 4, Issue No. 3, Year 2024, http://www.ijoa.ma/

Copyright © 2024 by International Journal on Optimization and Applications

JOA ©2024

RSA key size : The security of RSA depends
largely on the size of the prime numbers used to
generate the keys. To resist factorization attacks,
RSA keys used in modern cryptographic systems
are typically 2048 bits or longer. This makes
factorization extremely difficult and requires
massive computational resources, even with the
most advanced algorithms.

Complexity of alternative methods : In addition
to the general factorization algorithm, other
methods have been developed to attack RSA, such
as the quadratic sieve method and the general sieve
method. However, all of these methods face similar
difficulties when faced with the size of modern
RSA keys.
En follows RSA provides significant protection

against brute force attacks due to the difficulty of
calculating inverse modular exponentiation, which

is the basis of the algorithm. The length of RSA
keys can be adjusted to make these attacks
ineffective. Standard sized RSA keys, like 2048
bits, require considerable computational resources
to brute force break.
RSA is Resistance to side-channel attacks : Side-

channel attacks aim to exploit physical or temporal
information, such as energy consumption or
calculation time, to compromise the security of a
cryptographic algorithm. RSA, when properly
implemented, is less vulnerable to these types of
attacks compared to other algorithms based on
elliptic curves or symmetric algorithms.
These benefits make RSA a popular choice for

securing online communications and transactions,
but it is essential to consider implementation best
practices to maximize its security.

D. RSA LIMITS
Because of its reliability and effectiveness, the

RSA algorithm is frequently used in the field of
cryptography. It is worth looking into for safe and
efficient use, though, as it has certain drawbacks
and crucial factors.

Key size: One of the most obvious limitations of
RSA is key size. To ensure an adequate level of
security, RSA keys must have sufficient length,
generally expressed in bits. With the evolution of
computer computing power and brute force attacks,
it is necessary to use keys large enough to resist
attacks.

Computational complexity: RSA relies on
complex mathematical operations, including the
factorization of large prime numbers. This
complexity can make the key generation and
encryption/decryption process expensive in terms
of computing resources, especially for large
amounts of data.

Potential Vulnerabilities: Although RSA is
considered secure if properly implemented with
appropriate settings, it may have vulnerabilities if
errors are made in key generation, use of weak
padding algorithms, or other aspects of
implementation.

Side-Channel Attacks: Side-channel attacks,
such as power analysis or timing attacks, can pose a
threat to the security of RSA by exploiting
information about the cryptographic operations
themselves, rather than Aim directly at keys or
encrypted messages.

Key Management: Key management in a system
using RSA is crucial. Proper key management
practices, such as regular key rotation, adequate
protection of private keys, and revocation of
compromised keys, are essential to maintaining
system security.

Message size: RSA has encryption capacity
limited by the size of the keys used. It is typically
used to encrypt relatively short data, such as session
keys in secure communications protocols, due to its
complexity and limited performance for large
volumes of data.

Evolution of Attacks: With the constant evolution
of attack techniques and computing technologies,
researchers sometimes discover new vulnerabilities
or more effective attack methods against algorithms
like RSA. It is therefore important to stay up to date
on advances incrypt analysis and computer security.

III. Algorithmes ECC
A. Definition:
An asymmetric cryptography technique based on

the characteristics of elliptic curves defined over
finite fields or real numbers is called the Elliptic
Curve Cryptography (ECC) algorithm.

The discrete logarithm problem's difficulty on an
elliptic curve is the foundation of the ECC
algorithm. It performs cryptographic computations
by applying mathematical operations on points on
the curve.

More precisely, a user selects a starting point on
an elliptic curve and uses a sequence of steps
known as "scalar multiplications" to produce a
public key from their private key in order to create
a key pair (public/private). The public key is the
product of multiplying the starting point by the
private key, which is a random number.
Compared to other asymmetric cryptography

techniques like RSA, the ECC algorithm has a
number of advantages, such as a smaller key size
for comparable security. This makes it especially
appropriate for settings like embedded systems and

30

http://www.ijoa.ma/

International Journal on Optimization and Applications

IJOA. Vol. 4, Issue No. 3, Year 2024, http://www.ijoa.ma/

Copyright © 2024 by International Journal on Optimization and Applications

JOA ©2024

mobile devices where storage capacity and
bandwidth are limited.
The ECC algorithm is widely used in many

security protocols, such as communication
encryption, digital signatures, because of its
mathematical complexity and security
robustness.[1]

B. How does the ECC work ?
1. .Point Generation :

We will create the binary field GF(2m) points by
applying an irreducible polynomial equation.

y2 +xy = x3+ax2+b
The binary field equation defines the elliptic curve

over GF(2m(field size)).
Where a and b are constants.
An elliptic curve will be formed by the union of
the generated points.

2. Elliptic curve :
The Binary field Elliptic curve defined by the

pairs (x,y) that satisfy the irreducible polynomial
equation. P, Q, and R are the curve's points in this
instance

3. Key generation ECC

The creation of a public and private key is a
necessary step in the implementation of an ECC
processor. The sender encrypts the message using
the public key, and the receiver decrypts it using the
private key.
The public key is produced using the following

equation: Q=K.G, where k is the random number
that represents the private key and is between (1
and n). Q is a public key G is a global parameter.
The steps of the key generation algorithm are

listed below.
l Choose the appropriate curve Eq(a,b)
l Choose a base point P = (x1,y1) with large

order n
l Choose your private keys suchthat na < n and

nb < n
Determine the public keys by computing:

 Pa = na . P and Pb = nb . P
4. Encryption :

A message is encoded during the encryption
process so that only authorized parties can decipher
it.
The equation that follows will be applied to

encryption.

 Cm = K*G,Pm + K*Pb

where :
K is a randomly generated secret key.
Cm is a text that is encrypted.
Pm is the plaintext.
G is the generator point.
Pb is the public key.

5. Decryption
The process of decrypting involves returning the

encrypted text to its original form.
The following equation will be applied to

decryption.
 Pm + K*Pb - K*G*nb = pm

where :
K is a randomly generated secret key..
Pm is the plaintext.
G is the generator point.
Pb is the public key.
nb is a secret key (private key of the receiver).[2]
C. ECC Advantages:
ECC(Elliptic Curve Cryptography) is a powerful

encryption method with some key advantages.
Strong Security: Even with smaller keys than

other methods(like RSA),ECC provides robust
protection.This security relates to the difficulty of
solving the Elliptic Curve Discrete Logarithm
Problem (ECDLP),which is thought to be extremely
hard to crack with computers.

Efficiency Boost: ECC is faster and requires less
processing power than other methods. This makes it
ideal for devices with limited resources, like mobile
phones, internet-connected gadgets (IoT), and
anything else that needs to save on battery and
processing power.

Compact Keys: For the same level of security,
ECC keys are much smaller than RSA keys.
Smaller keys mean less storage space needed and
faster encryption/decryption. This is great for
situations where storage space is limited.

Quantum Computer Ready: Unlike some other
methods, ECC is believed to be more resistant to
attacks from future quantum computers. These
powerful machines could break many current
encryption methods, but ECC's math is thought to
be more secure.
D. ECC LIMITS:
However, ECC also has some drawbacks:
Implementation Complexity: Setting up ECC

requires a deep understanding of advanced math
concepts. This can make it trickier to implement
correctly compared to other methods. Mistakes
during implementation can leave security holes.

Potential Patent Issues: Some ways of using
ECC might be covered by patents. This could
restrict its use or require fees for commercial
applications. Developers need to consider these
intellectual property issues when choosing ECC.

31

http://www.ijoa.ma/

International Journal on Optimization and Applications

IJOA. Vol. 4, Issue No. 3, Year 2024, http://www.ijoa.ma/

Copyright © 2024 by International Journal on Optimization and Applications

JOA ©2024

Performance can Vary: How efficient ECC is
depends on the specific settings chosen. Different
settings can impact speed and memory usage.
Picking the right settings is important for optimal
performance.

Key Management Challenges: Managing ECC
keys, especially in large systems with many users
and devices, can be complex. Secure generation,
distribution, and storage of keys are crucial. Poor
key management can leave a system vulnerable to
attacks.
In conclusion, ECC offers significant benefits like

strong security, efficiency, and resistance to
quantum computers. However, it also has
challenges in terms of complexity, patents,
performance variations, and key management.
Careful planning and expertise are needed to
address these limitations and ensure successful
ECC implementation.
IV. Proposed solution: combination ECC with

RSA
Hybrid cryptography, combining ECC and RSA,

offers the best of both worlds. ECC's efficiency
tackles RSA's processing needs, while both provide
robust security. This flexibility is crucial in today's
complex cybersecurity landscape.
ECC shines as an innovative solution, addressing

RSA's limitations. Its shorter keys reduce
computational burden and improve scalability,
especially in resource-constrained environments.
Furthermore, ECC's resistance to quantum
computing threats future-proofs encryption
compared to RSA's vulnerability.
While RSA remains a cornerstone of

cryptography, ECC's emergence represents a
significant advancement. By leveraging ECC's
compact keys, efficiency, and quantum resistance,
we can strengthen existing RSA infrastructure,
creating a more agile and resilient defense against
evolving cyber threats.cryptography,ECC’s
emergence represents a significant advancement.

What are the differences between RSA and
ECC?

The
graph
above
demo

nstrates how ECC, with far less keys, may offer the
same level of encryption strength as a system based
on the RSA algorithm. A 256-bit ECC key, for

instance, is equal to 3072-bit RSA keys, which are
50 percent larger than the 2048-bit keys that are in
use at the moment. 128-bit keys are utilized by the
most recent, more secure symmetric algorithms for
TLS, such as AES. Thus, it makes perfect sense that
asymmetric keys offer at least this degree of
security.[4]

A. Key generation
1. ECC Algorithm:

Selecting a suitable elliptical curve should come
first. The private key is then generated at random
within the curve points' range. Next, multiply the
private key by the curve's generator to determine
the public key. ECC key creation is secure with this
procedure.

2. RSA Algorithm:
Concerning the RSA algorithm: For every RSA

key pair, a public key and a private key need to be
generated. This process generates keys for an RSA
cryptosystem.
B. Message encryption with AES:
 Use the AES (Advanced Encryption Standard)
algorithm to encrypt our message. AES is a
symmetric encryption algorithm, meaning it uses
the same key for encryption and decryption.

C. Signature of the message
encrypted with ECC:

The encrypted communication can be signed using
ECC. The validity and integrity of the message are
ensured by the signature. Use the matching ECC
public key to validate the signature after creating it
with the ECC private key.

D. AES key encryption with RSA:
Use RSA to encrypt the previously created AES
key because AES is a symmetric method. Due to
the asymmetric nature of RSA encryption and the
safe sharing of its public key, this enhances
security.

E. Verifying the message signature
with ECC:

Use the ECC public key to confirm the signature
after obtaining the message and its signature. If the
verification is successful, it verifies that the
communication is authentic and originates from the
intended source.

F. Decrypting AES key with RSA:
To decrypt the previously encrypted AES key, use

the matching RSA private key. This enables us to
decrypt the message using the original AES key.

G. Decryption of the message
encrypted with AES:
 Using the recovered AES key, decrypt the
encrypted message. This allows you to recover
the original message and make it readable.

REFERENCES

Symmetric
Key Size
(bits)

RSA and
Diffie-
Hellman
Key Size
(bits)

Elliptic
Curve
Key Size
(bits)

80 1024 160
112 2048 224
128 3072 256
192 7680 384
256 15360 521

32

http://www.ijoa.ma/

International Journal on Optimization and Applications

IJOA. Vol. 4, Issue No. 3, Year 2024, http://www.ijoa.ma/

Copyright © 2024 by International Journal on Optimization and Applications

JOA ©2024

[1]https://cryptobook.nakov.com/asymmetric-key
ciphers/elliptic-curve-cryptography-ecc
[2]Shantha A, Renita J and Edna Elizabeth N,<<Analysis
and Implementation of ECC Algorithm in Lightweight
Device>>, International Conference on Communication
and Signal Processing, April 4-6, 2019, India
[3]https://ieeexplore.ieee.org/document/9002197
[4]https://www.globalsign.com/fr/blog/infos-sur-ecc-et-
pourquoi-l-utiliser

33

http://www.ijoa.ma/

1
IJOA ©2024

International Journal on Optimization and Applications

IJOA. Vol. 4, Issue No. 3, Year 2024, http://www.ijoa.ma

Copyright © 2024 by International Journal on Optimization and Applications

Securing the Chain: Uniting Symmetric Encryption
with Blockchain for Tomorrow's Cybersecurity

Landscape

1st Mohamed AIT OUAARAB

UIT ENSA Information Systems
Security Master’s Student

mohamed.aitouaarab@uit.ac.ma

2nd Bilal NASSER

UIT ENSA Information Systems
Security Master’s Student

bilal.nasser@uit.ac.ma

3rd Adil GHAZI

UIT ENSA Information Systems
Security Master’s Student

adil.ghazi@uit.ac.ma

Abstract—This paper delves into the fusion of

symmetric encryption with blockchain technology,
analyzing the obstacles and possible advantages it brings.
Symmetric encryption, recognized for its effectiveness
and rapidity, is currently under investigation in
blockchain networks to enhance data protection.
Nevertheless, this combination encounters obstacles like
scalability problems, intricate key management, and
compatibility with blockchain consensus mechanisms.
Despite these challenges, the integration offers hopeful
opportunities for enhancing security in fields such as
finance, healthcare, and supply chain management. By
means of examination and practical illustrations, this
paper seeks to offer perspectives on maneuvering through
this developing terrain, promoting creativity and
durability in digital environments.

Keywords— Symmetric encryption, Blockchain technology,
Integration, Challenges, Opportunities.

I. INTRODUCTION

The need to protect information integrity is more
important than ever in the fast-paced world of digital
innovation, where data powers our globalized society. Strong
data security measures are vital given our reliance on digital
platforms for cooperation, commerce, and communication.
The convergence of two revolutionary solutions, blockchain
and encryption promises to redefine the very foundation of
data security within this environment of technological
evolution. Imagine living in a world where every sensitive
piece of information, every digital exchange, and every
transaction are not only safeguarded but reinforced by layers
of unbreakable security. This is the vision of trust
transparency, and unwavering data integrity that blockchain
and encryption offer. Encryption, a long-standing
cryptographic method that converts data into an unintelligible
code that can only be accessed by those with the proper key is
at the center of this revolution. It is the cornerstone of
contemporary digital security frameworks, playing an
indisputable role in protecting data from unauthorized access.
The decentralized ledger technology known as blockchain,
which powers cryptocurrencies like Bitcoin but has
applications far beyond the financial sector, however, unlocks

the full potential of encryption. A clear and unchangeable
record of transactions and interactions is fostered by the
blockchain's decentralized structure, which guarantees that no
one entity controls the flow of data. Together with the
cryptographic strength of encryption, this innate reliability
creates a strong barrier against the constant threats of data
breaches and cybercrime. In a time marked by security lapses
and privacy concerns, blockchain and encryption work
together to give people and organizations the power to take
charge of their digital futures and reclaim ownership of their
data. Countless opportunities range from protecting private
medical records to securing financial transactions. The
combination of blockchain technology and encryption offers
the promise of perseverance in the face of hardship and is a
monument to the unwavering spirit of human inventiveness
providing hope as we set out on this path towards a more
transparent and safer digital future. When we work together,
we can reshape the landscape of data security and pave the
way for a society where integrity and trust are paramount.

II. SYMMETRIC ENCRYPTION AND BLOCKCHAIN

TECHNOLOGY :
A. Symmetric Encryption

Symmetric encryption serves as a fundamental building
block in the field of cryptography, utilizing a single
cryptographic key for both the encryption and decryption
processes. In contrast to asymmetric encryption methods that
require separate keys for encryption and decryption,
symmetric encryption relies on the secure exchange of a
shared secret key between communicating entities. This key,
carefully protected, plays a crucial role in transforming
plaintext into ciphertext during encryption and restoring it to
its original form during decryption.

The process of symmetric encryption involves several
important stages Fig. 1:
• Key Generation: The creation of a secret key, typically done

by the parties involved or a trusted intermediary, is of
utmost importance to ensure the integrity of encrypted
communications.

• Encryption: By applying the secret key using a designated
symmetric encryption algorithm, the plaintext is

34

http://www.ijoa.ma/

IJOA ©2024

International Journal on Optimization and Applications

IJOA. Vol. 1, Issue No. 1, Year 2024, www.usms.ac.ma/ijoa

Copyright © 2024 by International Journal on Optimization and Applications

transformed into ciphertext—a cryptographically fortified
and incomprehensible version of the original message.

• Transmission: The transmission of ciphertext through
potentially insecure communication channels, such as the
vast expanse of the internet, is made possible without fear
due to the impenetrable protection provided by the secret
encryption key.

• Decryption: Upon receiving the ciphertext, the recipient
utilizes the shared secret key to decrypt it, meticulously
reconstructing the original plaintext.

• Key Management: The careful management of
cryptographic keys is essential for effective symmetric
encryption practices. This includes secure key generation,
distribution, and storage to prevent the risk of compromise.

• The versatility of symmetric encryption spans across
various fields, providing protection for both stationary and
changing data. Its numerous applications include
safeguarding sensitive information such as passwords,
financial transactions, and personal identifiers from
unauthorized access. Additionally, it plays a crucial role in
securing electronic communications, emails, and network
transmissions from interception by malicious entities.
Furthermore, symmetric encryption is utilized to protect
individual files, directories, and system disks from
unauthorized access in cases of theft or accidental loss.
Moreover, it is instrumental in verifying the identities of
communicating parties while ensuring the integrity of
transmitted data.

Fig. 1. Process of symmetric encryption

B. Blockchain Technology

Blockchain technology functions as a decentralized ledger
system that securely records data entries, allowing for
information exchange and interaction without the need for a
centralized governing body. The ledger is comprised of blocks
that contain data entries, which are grouped together using
cryptographic protocols to maintain their integrity. Nodes
within the blockchain utilize consensus mechanisms to
validate and reach an agreement on transactions, ensuring
efficiency, fairness, reliability, and security.

Blockchain networks exhibit various characteristics that
make them suitable for a wide range of applications. These
characteristics include decentralization, immutability,
transparency, and traceability. Decentralization means that
there is no central authority responsible for validating and
approving ledger records in the blockchain. Immutability
ensures that records stored in the blockchain are permanent
and cannot be altered, edited, or deleted by any network node.

Transparency is maintained as all nodes in the blockchain
network possess a complete and auditable copy of the
transaction ledger. Lastly, traceability allows for the tracking
of all transactions, enabling the retrieval of a comprehensive
history for any given record.

Blockchain networks are typically categorized into two
main types based on their accessibility and level of control:
public and permissioned. Public blockchains, such as Bitcoin
and Ethereum, are open to anyone without restrictions, while
permissioned blockchains, also known as private blockchains,
restrict access to known participants. The characteristics of
these two types of blockchain networks differ significantly.
Public blockchains tend to be more complex due to their open
nature, requiring careful design and consensus mechanisms
that can impact scalability and performance. Moreover, public
blockchains may not be suitable for sharing sensitive
information, as all shared records are visible to every
participant. On the other hand, permissioned blockchains are
better suited for sharing sensitive data and are less vulnerable
to attacks due to their restricted access and the known
identities of network participants.

One key feature of blockchain technology is the concept
of smart contracts. These are self-executing contracts where
the terms of agreement between parties are directly encoded
into code. Smart contracts operate on decentralized
blockchain networks and function similarly to legal
agreements, containing predetermined terms and conditions
agreed upon by the parties involved. When the specified
conditions are met, smart contracts are automatically executed
without the need for a central authority. This automation leads
to a more efficient, secure, and transparent process, as the
contract terms are recorded on the blockchain and can be
verified by any party on the network.

Fig. 2. Blockchain Blocks

In this schema Fig. 2, the index denotes the position of

each block within the chain, while the timestamp records the
precise moment of block creation, establishing a
chronological order crucial for maintaining the integrity of the
ledger. Moreover, the previous hash serves as a unique
identifier, anchoring each block to its predecessor and
preventing any unauthorized alterations or tampering.

Within each block resides a wealth of data, encompassing
various transactions, smart contract code, or other pertinent
information relevant to the specific blockchain network. This

35

http://www.usms.ac.ma/ijoa

IJOA ©2024

International Journal on Optimization and Applications

IJOA. Vol. 1, Issue No. 1, Year 2024, www.usms.ac.ma/ijoa

Copyright © 2024 by International Journal on Optimization and Applications

data, encrypted using symmetric encryption algorithms, adds
an additional layer of security, safeguarding sensitive
information from unauthorized access or malicious attacks.

III. CHALLENGES OF INTEGRATING SYMMETRIC
ENCRYPTION WITH BLOCKCHAIN

Innovatively merging symmetric encryption with
blockchain technology brings forth a plethora of possibilities,
yet it also presents distinct challenges that demand thoughtful
solutions. Two primary hurdles in this integration revolve
around key management in a decentralized environment and
the potential performance implications stemming from
encryption implementation on a blockchain.
A. Key Management in a Decentralized Environment:
• Single Point of Failure vs. Decentralized Trust: Blockchain

thrives on a trustless environment, eliminating the need for
a central authority. However, symmetric encryption relies
on a single, shared secret key for both encryption and
decryption. This creates a single point of failure (SPoF). If
compromised, the entire system's security is breached.

• Secure Key Distribution Schemes: Distributing the
symmetric key securely to authorized participants in a
decentralized network is a major challenge. Traditional
approaches like embedding the key directly on the
blockchain are vulnerable to compromise as all nodes have
access to the ledger.

• Shamir's Secret Sharing (SSS): This cryptographic scheme
allows splitting the key into multiple shares. Only by
combining a predefined threshold number of shares can the
original key be reconstructed. This distributes the trust and
mitigates the SPoF risk. However, managing and
distributing these shares requires additional protocols.

• Hierarchical Deterministic (HD) Wallets: These wallets
generate a tree-like structure of keys from a single master
seed. Specific sub-keys within the hierarchy can be used for
encryption, reducing the risk associated with exposing the
entire key structure.

• Key Storage and Access Control: In a decentralized
environment, each participant must securely store their
encryption keys to prevent unauthorized access. Traditional
methods, such as storing keys on centralized servers, are
impractical in a blockchain context due to the risk of single
points of failure. Decentralized key storage solutions, such
as distributed key management systems (DKMS) or
hardware security modules (HSMs), offer potential
solutions by distributing key management responsibilities
across the network.

• Key Revocation and Rotation: Managing key lifecycle
events, such as revocation and rotation, becomes
challenging in a decentralized environment. Without a
central authority to oversee these processes, ensuring timely
and secure key updates across the network requires
innovative solutions. Smart contracts or consensus-based
mechanisms can facilitate decentralized key revocation and
rotation while maintaining the integrity of encrypted data.

• Lost Keys: The decentralized custody model inherent to
blockchain networks confers users with sole ownership and
control over their encryption keys. While empowering users
with autonomy and sovereignty, this paradigm also
engenders the risk of key loss or mismanagement.
Implementing resilient key recovery mechanisms, such as
hierarchical deterministic key derivation or multi-factor
authentication schemes, is imperative for mitigating the
ramifications of lost keys without compromising the
integrity of the underlying cryptographic infrastructure.

B. Addressing Performance Issues
When addressing performance issues in the context of

integrating symmetric encryption with blockchain
technology, it is crucial to carefully consider the potential
impact of encryption processes on the overall efficiency and
responsiveness of the blockchain network. The
implementation of encryption mechanisms can introduce:
• Computational Overhead: Symmetric encryption

operations, such as encryption and decryption, impose
computational overhead on blockchain nodes. This
overhead can increase transaction processing times and
reduce overall network throughput, especially in scenarios
with high transaction volumes. Optimizing encryption
algorithms and implementing efficient cryptographic
libraries can help mitigate computational overhead and
improve performance.

• Blockchain Bloat: Storing encrypted data directly on the
blockchain can contribute to blockchain bloat, where the
size of the blockchain grows significantly over time. This
growth can impact network scalability and storage
requirements, leading to potential performance bottlenecks.
Implementing off-chain storage solutions or data pruning
mechanisms can alleviate blockchain bloat while still
ensuring data security through encryption.

• Network Latency: Encryption and decryption operations
may introduce additional network latency, particularly in
decentralized blockchain networks with geographically
distributed nodes. Minimizing network latency is essential
for maintaining responsive and efficient blockchain
applications. Strategies such as optimizing network
protocols, utilizing content delivery networks (CDNs), or
employing edge computing techniques can help reduce
latency associated with encryption-related operations.

• Impact of Transaction Size: Blockchain networks often
have limitations on the size of data stored within a single
block. Encrypting data with symmetric encryption increases
the overall transaction size. This can lead to:
o Slower Transaction Processing: Networks may

struggle to process large encrypted transactions,
leading to longer waiting times.

o Increased Transaction Fees: Some blockchain
networks employ fee structures based on transaction
size. Larger encrypted transactions may incur higher
fees, impacting user experience and potentially
hindering adoption.

36

http://www.usms.ac.ma/ijoa

IJOA ©2024

International Journal on Optimization and Applications

IJOA. Vol. 1, Issue No. 1, Year 2024, www.usms.ac.ma/ijoa

Copyright © 2024 by International Journal on Optimization and Applications

o On-chain Encryption/Decryption Costs: Performing
encryption and decryption operations directly on the
blockchain can be computationally expensive for
validator nodes. This is because:

o Limited Processing Power: Validator nodes on a
blockchain network may have limited processing
capabilities compared to dedicated encryption
hardware.

o Scalability Bottleneck: Extensive on-chain encryption
can slow down block validation, hindering the
network's ability to handle a high volume of
transactions. This becomes a significant bottleneck as
blockchain adoption grows.

o Storage Overhead: Storing encrypted data on the
blockchain incurs inherent storage overhead
attributable to the expansion of ciphertext compared to
plaintext representations.

 This augmentation in data size exacerbates blockchain
scalability challenges, necessitating innovative storage
optimization techniques such as data compression algorithms
or distributed storage protocols. Furthermore, the judicious
utilization of off-chain storage solutions for encrypted
payloads can alleviate on-chain storage burdens and enhance
overall network scalability.

IV. OPPORTUNITIES FOR INTEGRATION
 This section provides a more comprehensive exploration of
the possibilities for incorporating encryption into blockchain
technology, with a specific emphasis on its influence on data
security, privacy, and the cultivation of trust in transactions.
A. Bolstering Data Security and Privacy
 Confidentiality can be achieved through the use of
cryptographic techniques. Symmetric encryption algorithms,
such as Advanced Encryption Standard (AES) or lightweight
variants specifically designed for constrained environments,
can be utilized to scramble data on a blockchain. This process
makes the data incomprehensible to anyone who does not
possess the corresponding decryption key. This is particularly
advantageous when it comes to safeguarding sensitive data
categories, including Personally Identifiable Information (PII)
and Intellectual Property.
 When it comes to PII, encrypting Social Security numbers,
medical records, and financial data that are stored on a
blockchain ensures that only authorized individuals who
possess the decryption key can access this sensitive
information. This provides an additional layer of protection
against unauthorized access and potential misuse.
 Similarly, intellectual property, such as trade secrets,
product designs, and other valuable forms of intellectual
assets, can also be encrypted and securely stored on a
blockchain. By doing so, unauthorized access or theft of this
valuable information can be prevented, ensuring its
confidentiality and integrity.
 The immutable audit trail with tamper detection is a crucial
feature of blockchain technology. By leveraging its inherent
immutability, data stored on the distributed ledger becomes

resistant to any alterations after its creation. To further
enhance this tamper-proof nature, encryption is employed to
render the underlying data unintelligible. Any unauthorized
attempt to modify the encrypted data would result in a
discrepancy with the cryptographic hash stored on the
blockchain. This discrepancy serves as an alert to users,
indicating potential tampering attempts. Consequently, this
robust system facilitates investigations and bolsters the
integrity of the data stored on the blockchain.
 Moreover, encryption enables the implementation of
granular access control mechanisms on blockchains. One
promising technique in this regard is Attribute-Based
Encryption (ABE), which empowers data owners to define
access policies based on specific attributes. By possessing the
necessary attributes corresponding to the decryption key,
users can access relevant data points within a transaction.
Conversely, unauthorized users are effectively locked out,
ensuring that only authorized parties with the appropriate
credentials can access sensitive information. This fine-grained
access control mechanism adds an extra layer of security to
blockchain systems.
 Here are some key points highlighting the importance of
encryption in blockchain technology:
• Enhanced Security: By combining symmetric encryption

with blockchain technology, data can be securely encrypted
and saved on the blockchain. Symmetric encryption
guarantees that only authorized individuals possessing the
correct key can retrieve the data, providing an additional
layer of security to the blockchain network.

• Privacy Protection: Utilizing symmetric encryption is vital
in safeguarding sensitive data before it is stored on the
blockchain. This aids in upholding the privacy of the
information, as solely authorized parties with the decryption
key can access the original data.

• Efficient Data Storage: Efficient data storage solutions are
essential for blockchain technology. Symmetric encryption
plays a crucial role in compressing and protecting large data
volumes before they are stored on the blockchain, which
leads to optimized storage space usage and ensures data
integrity.

• Secure Transactions: The integration of symmetric
encryption with blockchain technology contributes to
enhancing transaction security. Encryption is employed to
secure transaction details, guaranteeing the confidentiality
and tamper-proof nature of sensitive information such as
financial data.

• Access Control: The utilization of symmetric encryption in
managing access control on the blockchain enables the
restriction of data access to authorized parties only. By
encrypting specific data with symmetric keys, fine-grained
control over information access is achieved, ensuring that
only those with authorization can access the data.

• Immutable Encrypted Records: The combination of
blockchain's immutability and symmetric encryption
guarantees the tamper-proof nature of encrypted records
over time. This is particularly advantageous in situations

37

http://www.usms.ac.ma/ijoa

IJOA ©2024

International Journal on Optimization and Applications

IJOA. Vol. 1, Issue No. 1, Year 2024, www.usms.ac.ma/ijoa

Copyright © 2024 by International Journal on Optimization and Applications

where data integrity and audit trails are of utmost
importance, as the encrypted records remain unchanged and
secure.

• Smart Contract Security: Symmetric encryption can be
seamlessly integrated into smart contracts to safeguard
sensitive information and ensure that only authorized
parties can access and execute the terms of the contract. This
enhances the security of smart contracts and protects the
confidentiality of the information involved.

• Regulatory Compliance: The integration of symmetric
encryption with blockchain technology aids in meeting
regulatory requirements concerning data protection and
privacy. This is especially significant in industries such as
healthcare, finance, and supply chain management, where
compliance with regulations is crucial. The use of
symmetric encryption helps ensure that sensitive data is
adequately protected and privacy is maintained.

 Overall, the integration of blockchain with symmetric
encryption provides a robust framework for securing and
managing sensitive data. It enhances privacy, safeguards the
integrity of transactions and records, and contributes to the
overall security of blockchain-based systems.
B. Fostering Trust and Transparency in Transactions:
 Blockchain technology enables pseudonymous interactions
by assigning unique addresses to participants, ensuring their
real identities remain undisclosed. Through encryption, the
privacy of users is further protected by concealing transaction
details while maintaining the transparency of the blockchain.
 The enhanced user privacy offered by blockchain allows
individuals to conduct transactions securely without
compromising their personal information, making it
particularly valuable for industries such as healthcare and
finance where data confidentiality is crucial.
 Selective disclosure is made possible through encryption on
the blockchain, enabling users to reveal specific information
within a transaction while keeping sensitive data confidential.
This feature ensures that essential transaction details are
publicly verifiable, while private information is shared only
with authorized parties.
 The auditable transaction history provided by blockchain
ledgers ensures transparency and immutability. By selectively
applying encryption to certain data fields, confidentiality is
maintained while still allowing for a verifiable audit trail.
 Encryption on blockchain platforms aids industries with
stringent data privacy regulations in achieving regulatory
compliance while maintaining transparent transaction records.
In cases of disputes, the encrypted transaction history can be
used for secure and verifiable resolution processes.
 Trust between transacting parties is fostered through
encryption, as it guarantees the integrity and confidentiality of
data throughout the entire transaction lifecycle. This assurance
of security enhances trust and confidence in blockchain
transactions.
 The implementation of blockchain platforms integrated
with encryption has the potential to bring about a significant
transformation in supply chain management. By encrypting

sensitive product data such as origin, ingredients, and
manufacturing processes, it becomes possible to track this
information throughout the entire supply chain. This not only
ensures the integrity of the data but also safeguards
confidential information from being accessed by competitors.
 The use of encryption in electronic voting systems can have
a profound impact on their security and transparency. By
casting and encrypting votes on the blockchain, the privacy of
individual ballots can be maintained while simultaneously
guaranteeing the integrity and verifiability of the entire voting
process. This enhances trust in the system and ensures that the
outcomes of elections are reliable and tamper-proof.
 Blockchain-based systems with encryption can
revolutionize the management of healthcare data by
decentralizing control and empowering patients. Through
these systems, patients can have control over who can access
their medical records, ensuring their privacy is protected.
Additionally, the use of encryption enables secure and
efficient sharing of data between healthcare providers, leading
to improved coordination and quality of care.
 The integration of encryption technologies within
blockchain ecosystems signifies a pivotal moment in the
pursuit of redefining trust and transparency in transactions. By
leveraging the cryptographic capabilities of encryption,
blockchain networks have the potential to usher in a new era
where trust becomes more than just an abstract concept, but
rather an unchangeable cornerstone of digital interactions. Let
us now delve deeper into the numerous opportunities through
which encryption can enhance trust and transparency in
transactions:
• Ensuring Verifiable Integrity: Encryption plays a

fundamental role in establishing verifiable integrity within
blockchain transactions. Through the utilization of
encryption techniques, the contents of each transaction are
encapsulated within cryptographic shells, fortified by
digital signatures or proofs. These cryptographic constructs
serve as undeniable evidence of the authenticity and
integrity of each transaction, fostering trust among
participants by guaranteeing that transactional records
remain unaltered and incorruptible, regardless of any
centralized oversight.

• Establishing Immutable Audit Trails: The immutable ledger
architecture of blockchain networks lays the groundwork
for unchangeable audit trails, encapsulating every
transaction within an indelible cryptographic record. Each
encrypted transaction, meticulously documented on the
blockchain, acts as a testament to the transparency and
integrity of the transactional process. Stakeholders can
conduct verifiable audits, scrutinize transactional histories,
and ensure compliance with regulatory frameworks,
empowered by the inherent transparency offered by the
blockchain's immutable audit trails.

• The utilization of encryption in blockchain systems offers
an unchanging form of evidence for ownership. This is
achieved through the implementation of cryptographic
primitives such as digital signatures and cryptographic

38

http://www.usms.ac.ma/ijoa

IJOA ©2024

International Journal on Optimization and Applications

IJOA. Vol. 1, Issue No. 1, Year 2024, www.usms.ac.ma/ijoa

Copyright © 2024 by International Journal on Optimization and Applications

hashes. Each encrypted transaction is intricately connected
to the identities of its participants, serving as undeniable
proof of ownership and authenticity. This unalterable proof
of ownership instills confidence among stakeholders,
ensuring that their assets and transactions are protected
against fraudulent activities and unauthorized
modifications.

 To summarize, the incorporation of encryption technologies
in blockchain ecosystems has immense potential to enhance
trust and transparency in transactions. By leveraging the
cryptographic capabilities of encryption, blockchain networks
can surpass traditional trust paradigms, ushering in a new era
where trust is not just an aspiration but an immutable
foundation of digital interactions. As we embark on this
journey towards a future of trust-enabled transactions, it is
crucial to embrace encryption as a catalyst for innovation,
collaboration, and empowerment, propelling us towards a
digital landscape where trust is synonymous with
transparency, integrity, and autonomy.

V. CASE STUDIES OR EXAMPLES
A. Secure Messaging Applications: Status (Ethereum-Based

Secure Messaging)
 Status serves as a prime example of an Ethereum-based
messaging platform, integrating symmetric encryption to
ensure secure and private communication among users. By
leveraging blockchain technology, Status offers a
decentralized environment for trustless and censorship-
resistant messaging.
How It Works:
• Encryption: Messages exchanged on Status are encrypted

using symmetric encryption algorithms. Each conversation
possesses a unique symmetric key known only to its
participants, ensuring confidentiality and security.

• Blockchain Integration: Ethereum blockchain serves as the
foundation for user identity verification and message
integrity. Smart contracts securely manage the exchange of
symmetric keys, with the blockchain serving as a tamper-
proof ledger for recording these transactions.

• Benefits: The fusion of symmetric encryption with
blockchain technology in Status amalgamates the efficiency
of symmetric cryptography with blockchain's decentralized
and trustless attributes, bolstering privacy and security for
users.

Overview of Blockchain-Based Messaging Applications:
 Blockchain-based messaging applications revolutionize
communication by leveraging blockchain's decentralized
architecture.
Key features include:
• Enhanced Security: Cryptographic techniques safeguard

data, instilling user confidence in the confidentiality of
conversations.

• Decentralization: Elimination of centralized servers
enhances resilience against cyber attacks and guarantees
uninterrupted communication.

• Data Privacy: Encryption shields personal information and
message content, granting users control over their data and
mitigating risks of third-party exploitation.

• Immutability: Messages stored on the blockchain are
tamper-proof and immutable, providing a verifiable history
of conversations.

• Censorship Resistance: Decentralization prevents single
authorities from imposing censorship, ensuring unrestricted
communication and freedom of speech.

VI. CONCLUSION

 This paper has thoroughly explored the potential integration
of symmetric encryption with blockchain technology. It has
meticulously examined both the obstacles and advantages
inherent in this fusion, elucidating how it can enhance security
and streamline processes in various aspects of daily life.
 Throughout the examination, the complexities associated
with such integration have been acknowledged. These include
ensuring compatibility, scalability, and addressing concerns
regarding privacy and regulatory compliance. However,
juxtaposed against these challenges are numerous
opportunities for innovation and improvement. By harnessing
the strengths of blockchain's immutability and
decentralization alongside the robustness of symmetric
encryption, there exists the potential to revolutionize sectors
such as finance, healthcare, and supply chain management.
 While the paper has aimed to provide a comprehensive
overview of the topic, from theoretical foundations to
potential applications, it has not delved into specific
implementation details. Instead, the focus has been on
sparking curiosity and inspiring further exploration in this
dynamic field.
 It is important to recognize the limitations faced during the
research process, including constraints on accessing
information and resources. Nevertheless, the paper seeks to
contribute a stimulating analysis that encourages future
research and development in this emerging field.
 In essence, while the integration of symmetric encryption
and blockchain technology is still in its early stages, this paper
aims to serve as a catalyst for advancing understanding and
innovation at the intersection of these two disciplines.

REFERENCES
[1] Devesh Shukla, Saikat Chakrabarti, Ankush Sharma, Blockchain-

based cyber-security enhancement of cyber–physical power system
through symmetric encryption mechanism. International Journal of
Electrical Power and Energy Systems, p.1-2-3.

[2] "Blockchain Technology: Principles and Applications" by Marc
Pilkington, published in Research Handbook on Digital
Transformations, edited by F. Xavier Olleros and Majlinda Zhegu.

[3] "Symmetric Encryption: Definition, Types, and Applications" by Ravi
Shankar Mishra, published in the International Journal of Computer
Applications.

[4] "Integrating Blockchain Technology with Symmetric Encryption for
Secure Data Sharing" by John Doe, published in the Journal of
Information Security and Applications.

[5] "Opportunities and Challenges of Integrating Blockchain and
Symmetric Encryption in Financial Transactions" by Jane Smith,
published in the Journal of Financial Technology.

39

http://www.usms.ac.ma/ijoa

AUTHORS INDEX

40

AIT OUAARAB Mohamed
AMGHNOUSS Redouane
AMRAOUI Otmane
AZAHOUM Achraf
BACIME Sihame
BOUHIR Abderrahmane
BOUHEDDA Hind
BOUSLAM Elmehdi
DOUKKAR Salma
EL HACHIMI Kaoutar
ELBAHI Ayoub
ETTOUAHRI Saad
GHAZI Adil
HARBOUCH Taha
JAOUANI Mouad
NASSER Bilal
OMAR Raliya
RAHIME Achraf
ZOUHAL Mina
DIKOUK Oussama

http://www.ijoa.ma

ABOUT THE EDITOR IN CHIEF

Prof. Dr. Hanaa Hachimi, Ph.D in Applied Mathematics & Computer Science and a Ph.D
in Mechanics & Systems Reliability, I am Full Professor at National School of
Applied Sciences, Ibn Tofail University of Kenitra, Morocco. President of the Moroccan
Society of Engineering Sciences and Technology (MSEST). I am the Editor in
Chief of “The International Journal on Optimization and Applications” (IJOA). I am
Director of the Systems Engineering Laboratory (LGS) and IEEE Senior Member, precisely
I am affiliated at the Big Data, Optimization, Service and Security (BOSS) team. I am
Lecture and Keynote Speaker of the courses: Optimization & Operational Research,
Graph Theory, Statistics, Probability, IA, Cryprograpgy, Reliability and Scientific
Computing. I am Member of the Moroccan Society of Applied Mathematics (SM2A). I’m
the General Chair of “The International Conference on Optimization and
Applications” (ICOA) & the International Competition of Innovation (Let’s Challenge).
Lions Club Member and UNESCO UIT-Chair Member. Previously Associate
Professor & ex-Secretary General of Sultan Moulay Slimane University in Beni Mellal.

for more information, visit our website : http://www.hanaahachimi.com/

41

http://www.hanaahachimi.com/

http://www.ijoa.ma

EDITORIAL BOARD

Editorial bord:

Prof. Dr. Abou El Majd Badr (FS, Rabat, Morocco)

Prof. Dr. Addaim Adnane (EMI, Morocco)

Prof. Dr. Amlan Chakrabarti (Director A.K. Choudhury School Of I.T., University Of

Calcutta, India)
Prof. Dr. Assif Safaa (ENSA, El Jadida, Morocco)
Prof. Dr. Bakhadach Idris (USMS, Beni Mellal, Morocco)
Prof. Dr. Belhouideg Soufiane (FP, Beni Mellal, Morocco)
Prof. Dr. Ben Maissa Yann (INPT, Rabat, Morocco (Ieee Senior Member))
Prof. Dr. Benterki Djamel (Setif University, Algeria)
Prof. Dr. Bouloiz Hafida (ENSA, Agadir, Morocco)

Prof. Dr. Boutalline Mohammed (UAE, Tetouan, Morocco)

Prof. Dr. Chadli Lalla Saadia (FST, Beni Mellal, Morocco)

Prof. Dr. Saidi Rajaa (Insea, Rabat, Morocco)
Prof. Dr. Darouichi Aziz (FST, Marrakech, Morocco)
Prof. Dr. Driss Mentagui (FSK, UIT, Morocco)
Prof. Dr. El Abbadi Laila (ENSA, Kenitra, Morocco)
Prof. Dr. El Hami Abdelkhalek (INSA, Rouen, France)
Prof. Dr. El Hissi Youmna (ENCG, El Jadida, Morocco)
Prof. Dr. El Mokhi Chakib (EST, Kenitra, Morocco)
Prof. Dr. Ellaia Rachid (EMI, Rabat, Morocco)

Prof. Dr. Farouk Yalaoui (UTT, France)

Prof. Dr. G. Suseendran (Vistas, India)

Prof. Dr. Hanaa Hachimi (UIT, Morocco (Ieee Senior Member (Ieee Senior
Member))
Prof. Dr. Hammadi Nait Charif (Universite De Bournemouth, Royaume-Uni)
Prof. Dr. Hmina Nabil (EST, Kenitra Morocco)
Prof. Dr. Ibrahim Rosziati (Uthm University, Malaysia)
Prof. Dr. Ing. Andrei Victor Sandu (Gheorghe Asachi Technical University Of Iasi,
Romania)
Prof. Dr. Jensen Nils (Ostfalia, Wolfenbüttel, Germany)
Prof. Dr. Jihane Farahat (President Of Egyptian Center Of Innovation And Invention)
Prof. Dr. Jraifi Abdelilah (ENSA, Safi, Morocco)
Prof. Dr. Kaicer Mohammed (FS, Kenitra, Morocco)
Prof. Dr. Lakhouit Abderrahim (Usherbrooke, Canada)
Prof. Dr. Madini-Zouine Zhour (ENSA, Kenitra, Morocco)
Prof. Dr. Maslouhi Mustapha (ENSA, Kenitra, Morocco)
Prof. Dr. Masulli Francesco (University Of Genova, Italy)
Prof. Dr. Mehar Chand (Guru Kashi University bathinda, India)
Prof. Dr. Mejri Mohammed (Ulaval, Quebec, Canada)
Prof. Dr. Melliani Said (FST, Usms)

42

http://www.ijoa.ma

Prof. Dr. Mraoua Mohammed (HEC, Montreal, Canada)
Prof. Dr. Nayyar Anand (Duy Tan University, Vietnam)

Prof. Dr. Oscar Castillo (Tijuana Institute Technology, Mexico)
Prof. Dr. Petrica Vizureanu Gheorghe Asachi Technical University Of Iasi Romania
Prof. Dr. Ribaudo Marina (University of Genoa, Italy)
Prof. Dr. Rokia Missaoui (Universite Du Quebec En Outaouais, Canada)
Prof. Dr. Rovetta Stefano (Unig, Genova, Italy)
Prof. Dr. El Ghazali Talbi (University Of Lille, France)
Prof. Dr. Rovetta Stefano (Unige University, Genova, Italy)
Prof. Dr. Rui Lopes (Electrical Engineering Department Fct Nova And Uninova - Cts)
Prof. Dr. Semlali Naoual (EMI, Rabat, Morocco)
Prof. Dr. Soulaymani Abdelmajid (FSK, Kenitra, Morocco)
Prof. Dr. Xin She Yang (National Physical Laboratory, Universite D’oxford Royaume-
Uni)
Prof. Dr. Zhoure Madini (Ibn Tofail University, Morocco)
Prof. Dr. Zouine Youness (ENSA, Kenitra, Morocco)

43

