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Abstract- Homomorphic encryption schemes provide a 
powerful mechanism for performing computations on 
encrypted data without decrypting it. This capability holds 
significant promise for enhancing the security and privacy of 
sensitive information in various applications. In this paper, 
we focus on exploring homomorphic encryption schemes 
using the Advanced Encryption Standard (AES). We review 
the fundamental principles of homomorphic encryption and 
discuss the potential advantages and challenges of using AES 
as the underlying cryptographic primitive. Furthermore, we 
survey recent advancements in the field and highlight key 
research directions for future exploration. Our analysis aims 
to provide researchers and practitioners with insights into the 
state-of-the-art techniques and opportunities for leveraging 
homomorphic encryption with AES in real-world 
applications. 
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I. INTRODUCTION 
In order to enable safe computation on encrypted 

data and protect the confidentiality and integrity of sensitive 
information in a variety of situations, homomorphic 
encryption has become a key technology. With 
homomorphic encryption, computations can be done 
directly on encrypted data, producing encrypted results that 
can be decrypted to produce the same result as if the 
computations were done on plaintext data. This is in contrast 
to traditional encryption schemes, which make data 
unreadable to unauthorized parties. This capability creates 
new opportunities for secure computation outsourcing, 
cooperative data sharing across trust boundaries, and 
privacy-preserving data analysis. Finding a balance between 
security, efficiency, and functionality is one of the main 
issues in the design of homomorphic encryption schemes. 

 
P. Paillier, “Public-key cryptosystems based on composite 
degreeresiduosity classes,” EUROCRYPT 1999, LNCS, vol.1592, pp.223–238, 
1999. 

The Advanced Encryption Standard (AES) is a symmetric 
encryption algorithm that has gained widespread adoption 
due to its robust security features and seamless integration 
on contemporary computing platforms.  
High computing performance and strong security 
guarantees can both be obtained by utilizing AES in 
homomorphic encryption schemes. However, careful 
consideration of AES's cryptographic properties and the 
creation of appropriate algebraic structures are needed to 
adapt it to support homomorphic operations. Homomorphic 
encryption (HE) [1] is a kind of public key encryption that 
allows computation over encrypted data with- out knowing 
the secret key, and has several applications such as 
delegated computation on cloud servers. 
In this paper, we present an exploration of the combination 
of homomorphic encryption with AES (Advanced 
Encryption Standard) techniques, highlighting its 
significance in preserving privacy and security in data 
processing. 
The background section provides an explanation of 
homomorphic encryption principles, including its different 
types such as partially homomorphic, somewhat 
homomorphic, and fully homomorphic encryption. We also 
provide an overview of the AES encryption algorithm, 
including its block cipher structure, key sizes, and 
cryptographic properties. Furthermore, we review previous 
research on homomorphic encryption schemes and their 
various use cases. 
Moving on to the fundamentals, we delve into how 
homomorphic encryption principles can be applied to AES 
encryption. We discuss the challenges and considerations 
involved in adapting AES for homomorphic operations. 
Additionally, we provide an overview of existing 
techniques and approaches for combining homomorphic 
encryption with AES. 
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The subsequent section explores specific techniques and 
methodologies for achieving homomorphic properties with 
AES in detail. We discuss encryption schemes, such as 
partially homomorphic or fully homomorphic encryption, 
that utilize AES as the underlying cryptographic primitive. 
We also evaluate the security, efficiency, and performance 
characteristics of different AES-based homomorphic 
encryption techniques. 
In the applications section, we survey real-world 
applications and use cases where homomorphic encryption 
schemes using AES can be applied. We provide examples 
of scenarios in data privacy, secure computation, cloud 
computing, and other domains that benefit from the 
combination of homomorphic encryption with AES. 
Additionally, we showcase case studies or practical 
implementations that demonstrate the effectiveness and 
feasibility of AES-based homomorphic encryption in 
various applications. 
The article then addresses the challenges and future 
directions in the field of AES-based homomorphic 
encryption, highlighting areas for further research and 
development. 
Finally, we conclude by summarizing the key findings and 
insights from the article, emphasizing the significance of 
combining homomorphic encryption with AES in 
enhancing privacy and security in data processing. 

II. BACKGROUND 
A. Homomorphic Encryption Definition: 

Homomorphic comes from the Greek words for ‘same 
structure’. It means that I can perform operations on things, 
and the structure is preserved after a mapping. 

The concept of homomorphic encryption was introduced 
in [1], of which two of the authors are Ronald L. Rivest and 
Len Alderman. The R and the A in RSA encryption. 

   The most popular example for the use of homomorphic 
encryption is where a data owner wants to send data up to the 
cloud for processing, but does not trust a service provider 
with their data. Using a homomorphic encryption scheme, the 
data owner encrypts their data and sends it to the server. The 
server performs the relevant computations on the data 
without ever decrypting it and sends the encrypted results to 
the data owner. The data owner is the only one able to decrypt 
the results, since they alone have the secret key. 

B. Homomorphic Encryption Types : 
Ø Partially Homomorphic Encryption (PHE): In PHE 

schemes, only one type of mathematical operation (either 
addition or multiplication) can be performed on 
encrypted data while preserving the homomorphic 
property. For example, the RSA cryptosystem is partially 
homomorphic with respect to multiplication. 

Ø Somewhat Homomorphic Encryption (SHE): SHE 
schemes allow a limited number of both addition and 
multiplication operations to be performed on encrypted 

data while maintaining the homomorphic property. 
Examples include the Gentry-Halevi Smart (GHS) 
scheme and the Brakerski-Gentry-Vaikuntanathan 
(BGV) scheme. 

Ø Fully Homomorphic Encryption (FHE): FHE 
schemes support an unlimited number of both addition 
and multiplication operations on encrypted data. In 
addition to addition and multiplication, fully 
homomorphic encryption schemes can be used to 
perform a wide range of operations, including 
subtraction, division, comparison, boolean operations 
(AND, OR, NOT), and more. This makes FHE schemes 
Turing complete, meaning that any computable function 
can be evaluated on encrypted data. 

C. Overview of AES: 
The DES key length was a mere 56 bits. And it turned out that 
this isn’t nearly enough to keep encrypted information safe. 
For example, a test by distributed.net and the Electronic 
Frontier Foundation showed that DES can be easily cracked 
in a little bit more than 22 hours. Keep in mind that this was 
done in 1999, when computing power was far from what it is 
now. 
Today, a powerful machine can crack a 56-bit DES key in 
362 seconds.  
On the other hand, cracking a 128-bit AES encryption key 
can take up to 36 quadrillion years. 

AES is a symmetric encryption algorithm and a block cipher. 
The former means that it uses the same key to encrypt and 
decrypt data. The sender and the receiver must both know -- 
and use -- the same secret encryption key. This makes AES 
different from asymmetric algorithms, where different keys 
are used for data encryption and decryption. Block cipher 
means that AES splits a message into smaller blocks and 
encrypts those blocks to convert the plaintext message to an 
unintelligible form called ciphertext. 

AES uses multiple cryptographic keys, each of which 
undergoes multiple rounds of encryption to better protect the 
data and ensure its confidentiality and integrity. All key 
lengths can be used to protect Confidential and Secret level 
information. In general, AES-128 provides adequate security 
and protection from brute-force attacks for most consumer 
applications. Information that's classified as Top Secret -- 
e.g., government or military information -- requires the 
stronger security provided by either 192- or 256-bit key 
lengths, which also require more processing power and can 
take longer to execute. 

How does AES encryption work? 

   To understand the way AES works, you first need to learn 
how it transmits information between multiple steps. Since a 
single block is 16 bytes, a 4x4 matrix holds the data in a single 
block, with each cell holding a single byte of information. 

The matrix shown in the image is known as a state array. 
Similarly, the key being used initially is expanded into (n+1) 
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keys, with n being the number of rounds to 
be followed in the encryption process. So 
for a 128-bit key, the number of rounds is 
16, with no. of keys to be generated being 
10+1, which is a total of 11 keys. 

Add Round Key: You pass the block data 
stored in the state array through an XOR 

function with the first key generated (K0). It passes the 
resultant state array on as input to the next step. 

 
 

Sub-Bytes: In this step, it converts each byte of the state array 
into hexadecimal, divided into two equal parts. These parts 
are the rows and columns, mapped with a substitution box (S-
Box) to generate new values for the final state array. 

 
Shift Rows: It swaps the row elements among each other. It 
skips the first row. It shifts the elements in the second row, 
one position to the left. It also shifts the elements from the 
third row two consecutive positions to the left, and it shifts 
the last row three positions to th 

 
 

Mix Columns: It multiplies a constant matrix with each 
column in the state array to get a new column for the 
subsequent state array. Once all the columns are multiplied 
with the same constant matrix, you get your state array for the 
next step. This particular step is not to be done in the last 
rounde left. 

III. PRELIMINARY 

§ Basic Definitions and Properties: 
Plaintext: Plaintext refers to the original, readable, and 
unencrypted data or message that is to be encrypted. 
 
Ciphertext: Ciphertext is the encrypted form of plaintext, 
resulting from the application of an encryption algorithm and 
a secret key. It appears as unintelligible gibberish and 
requires the appropriate decryption key to revert it back to 
plaintext. 
 
Stream cipher: A stream cipher is a symmetric encryption 
method where plaintext is combined with a pseudorandom 
keystream, typically generated from a seed value, to produce 
ciphertext. It encrypts data bit by bit, offering high-speed 
processing and lower hardware complexity compared to 
block ciphers, but may be vulnerable to attacks if the same 
seed is reused. 
 
Block cipher: A block cipher is a symmetric encryption 
algorithm that operates on fixed-size blocks of data, 
transforming each block into ciphertext independently. It 
uses a cryptographic key to perform the encryption and 
decryption processes. 
 
Keywords: 

Gen: Generates public and secret keys based on a security 
parameter λ. 

Enc: Encrypts a plaintext M using a public key pk, 
producing a ciphertext C. 

Dec: Decrypts a ciphertext C using a secret key sk, 
resulting in either the original plaintext M or a failure symbol 
⊥. 

Eval: Evaluates an n-ary operation f on n ciphertexts  

(C1, . . . , Cn) using the public key pk, producing either a 
ciphertext or a failure symbol. 
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§ Symmetric Key Encryption: 
The following three PPT stands for “probabilistic 

polynomial- time” algorithms make up a symmetric key 
encryption (SKE) scheme as follows 

- Gen 1λ : Given a security parameter λ, it outputs an 
encryption key K. 

- Enc K, M : Given an encryption key K and a plaintext 

M, it outputs a ciphertext C. 

- Dec K, C : Given an encryption key K and a ciphertext 
C as input, it outputs either a plaintext or an error symbol ⊥. 

We require an SKE scheme to satisfy correctness: for any 
K Gen 1λ , any plaintext M, and any C Enc K, M , we always 
have M Dec K, C . 

§ Asymmetric Key Encryption: 
Asymmetric Key Encryption, also known as public-key 

cryptography, operates quite differently from symmetric key 
encryption. Instead of using a single key for both encryption 
and decryption, it employs a pair of keys: a public key and a 
private key. The basic operations involved in an asymmetric 
key encryption scheme are as follows: 

- Key Generation (Gen): Gen(1^λ): Given a security 
parameter λ, this algorithm generates a pair of keys: 
a public key (PK) and a private key (SK). The public 
key is intended for encryption, while the private key 
is kept secret and used for decryption. 

- Encryption (Enc): Enc(PK, M): Given a public key 
PK and a plaintext message M, this algorithm 
produces a ciphertext C. The ciphertext is generated 
in such a way that it can only be decrypted efficiently 
using the corresponding private key. 

- Decryption (Dec): Dec(SK, C): Given a private key 
SK and a ciphertext C, this algorithm retrieves the 
original plaintext message M. It's important to note 
that decryption is computationally feasible only with 
the private key corresponding to the public key used 
for encryption. 

The fundamental property of correctness still applies in 
asymmetric key encryption: 

- Correctness: For any key pair (PK, SK) generated 
by Gen(1^λ), and for any plaintext message M, if C 
= Enc(PK, M), then Dec(SK, C) = M. 

This property ensures that messages encrypted with 
a public key can be successfully decrypted only by 
the corresponding private key, thus maintaining the 
integrity and confidentiality of communication in 
asymmetric key encryption systems. 

 
2 T. El Gamal, “A public key cryptosystem and a signature schemebased on 

discrete logarithms,” IEEE Trans. Inf. Theory, vol.31, no.4,pp.469–472, 
1985. 

FV Scheme: The FV scheme, named after its creators Shai 
Halevi and Craig Gentry, is a homomorphic encryption 
scheme that enables computation on encrypted data without 
decryption. It supports both addition and multiplication 
operations on encrypted data, maintaining privacy 
throughout computations. 
 
BGV Scheme: The BGV scheme, developed by Zvika 
Brakerski, Craig Gentry, and Vinod Vaikuntanathan, is a 
homomorphic encryption scheme. It focuses on efficiency 
improvements and flexibility in parameter choices, allowing 
for optimized performance and customizable security levels 
in privacy-preserving computations. 

Additive HE: Supports only addition operation. 

Linear HE: Extends additive HE to include scalar 
multiplication. 

d-level HE: Supports operations on ciphertexts of different 
levels, allowing for more complex computations. 

§ How does HE works: 
In HE, operations on ciphertexts are designed to 

correspond to operations on plaintexts. 

When performing operations on ciphertexts, the result is 
encrypted and can be decrypted to obtain the result of the 
corresponding operation on plaintexts [].2 

For example, in additive HE, adding two ciphertexts 
encrypted with the same public key corresponds to adding the 
plaintexts they represent.  

Similarly, in linear HE, scalar multiplication of a 
ciphertext corresponds to scalar multiplication of the 
plaintext it represents. 

In d-level HE, operations are defined based on the levels 
of ciphertexts, allowing for more flexibility in computations 
while maintaining security properties. The ciphertext level 
ensures that operations are performed correctly and securely. 

IV. HOMOMORPHIC ENCRYPTION WITH AES: 
FUNDAMENTALS 

Homomorphic encryption applied to AES involves 
implementing mathematical operations on ciphertexts in such 
a way that when these operations are performed, []3 they 
produce results that are consistent with the operations 
performed on the plaintext before encryption. In other words, 
the operations performed on encrypted data yield the same 
results as if they were performed on the plaintext data 
directly. 
 

3   R. Canetti, S. Raghuraman, S. Richelson, and V. Vaikuntanathan, 
“Chosen-ciphertext secure fully homomorphic encryption,” PKC 2017, 

pp.213–240, 2017. 
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One common approach to achieve homomorphic properties 
with AES is to use fully homomorphic encryption (FHE) 
schemes built on top of AES. FHE schemes, such as the 
Brakerski-Gentry-Vaikuntanathan (BGV) scheme or the Fan-
Vercauteren (FV) scheme, allow for arbitrary computations 
on encrypted data. These schemes enable addition and 
multiplication operations on ciphertexts, which correspond to 
addition and multiplication operations on the plaintexts. 
 
Under this framework, encryption involves converting 
plaintexts into ciphertexts using AES encryption. Then, using 
homomorphic properties, mathematical operations such as 
addition and multiplication can be performed directly on the 
ciphertexts. These operations are executed in such a way that 
they preserve the desired properties of the plaintext data. 
 
For instance, in a scenario where two parties wish to compute 
the sum of their AES-encrypted data, they can use 
homomorphic addition to perform this operation directly on 
the ciphertexts. Similarly, if they need to perform 
multiplication operations on the encrypted data, 
homomorphic multiplication techniques can be applied. 
 
This capability is invaluable in scenarios where data privacy 
is critical, such as secure computation in cloud environments 
or collaborative data analysis. It allows organizations to 
securely outsource computations to untrusted servers without 
compromising the confidentiality of their sensitive data. By 
leveraging homomorphic encryption with AES, 
organizations can ensure that their data remains encrypted 
throughout computations, mitigating the risks associated with 
exposing plaintext data to potential adversaries and 
enhancing overall data privacy and security. 

V. TECHNIQUES FOR AES-BASED HOMOMORPHIC 
ENCRYPTION APPLICATIONS AND CHALLENGES 

Achieving homomorphic encryption directly with AES 
(Advanced Encryption Standard) is challenging due to AES's 
symmetric nature, lacking inherent homomorphic properties. 
However, various techniques have been explored to integrate 
AES within a homomorphic encryption framework or to 
achieve functionalities akin to homomorphic encryption 
using AES. Here are some strategies: 

A. Secure Multiparty Computation (SMC):  
Secure Multiparty Computation (SMC) is a cryptographic 
technique that enables multiple parties to jointly compute a 
function over their private inputs without revealing those 
inputs to each other. While AES itself doesn't directly support 
SMC, it can be used within an SMC framework to provide 
encryption of data involved in the computation. Here's how 
SMC can be applied in an AES-based  
homomorphic encryption setting:  
Overview:  
 Secure Multiparty Computation (SMC): SMC allows 
multiple parties to compute a function on their private inputs 
while keeping those inputs confidential.  

 AES-based Homomorphic Encryption: AES is a symmetric 
encryption algorithm that can be used to encrypt data within 
an SMC framework, enabling secure computation on 
encrypted inputs.  
 
Working Principle: 
 Data Encryption:  
 Each party encrypts its private input using AES encryption 
before sharing it with the other parties involved in the 
computation. This ensures that the inputs remain confidential 
during the computation.  
  
Secure Computation:  
 The parties perform the desired computation on the 
encrypted inputs within the SMC framework. This 
computation could involve arithmetic operations (e.g., 
addition, multiplication) or more complex functions.  
 
Result Decryption:  
 After the computation is completed, the parties jointly 
decrypt the result using a secure protocol. Since AES is 
symmetric, all parties must agree on the decryption key to 
decrypt the result. 
 AES-based Homomorphic Encryption within the SMC 
framework allows multiple parties to compute a function on 
their private inputs while preserving the confidentiality of 
those inputs, thereby enabling secure computation on 
encrypted data. 
 
Applications :  
      -Secure Auctions: SMC can facilitate secure auctions 
where bidders can submit their bids without revealing them 
to other participants until the end of the auction price. 
 This prevents bid manipulation and collusion. 
      -Privacy-preserving data analytics: SMC allows multiple 
parties to jointly analyze sensitive data without revealing 
their individual inputs.This is useful in situations such as 
healthcare research, financial analysis, and market research. 
      -Voting system: SMC can be applied to design a secure 
electronic voting system where voters can vote anonymously 
and maintain the integrity of the election process without 
revealing the votes of each individual. 
Challenges : Secure Multiparty Computation (SMC) faces 
challenges in efficiency, scalability, communication 
overhead, trust assumptions, and key management. 
Efficiency concerns arise due to the computational intensity 
of SMC protocols, while scalability issues emerge with the 
growing number of parties involved. Communication 
overhead is a challenge due to multiple rounds of 
communication; trust assumptions require careful 
consideration in adversarial environments, and key 
management presents difficulties in distribution, revocation, 
and storage. Addressing these challenges is crucial for 
practical deployment of SMC in secure and privacy-
preserving computation. 
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B. Hybrid Cryptosystems:  
Hybrid cryptosystems in an AES-based homomorphic 
encryption context involve combining the features of 
symmetric and asymmetric encryption schemes within a 
homomorphic encryption framework. This approach 
leverages AES for efficient symmetric encryption of data and 
incorporates asymmetric encryption for secure key exchange 
and other cryptographic functionalities. Here's how hybrid 
cryptosystems can be applied in an AES-based homomorphic 
encryption setting:  
Overview:  
 Hybrid Cryptosystems: Hybrid cryptosystems combine the 
efficiency of symmetric encryption with the security benefits 
of asymmetric encryption, offering a balanced approach to 
encryption.  
 
Working Principle:  
Symmetric Encryption (AES):  
 The data owner encrypts their data using AES symmetric 
encryption, generating ciphertexts that are efficiently 
processed.  
 Asymmetric Encryption:  
 The data owner encrypts the symmetric encryption key 
(DEK) used in AES with the public key of the intended 
recipient, ensuring secure key exchange.  
 Alternatively, asymmetric encryption can be used for other 
cryptographic functionalities such as digital signatures or 
secure communication.  
 Homomorphic Operations:  
 The encrypted data and keys can be processed within a 
homomorphic encryption framework,allowing computations 
to be performed on the ciphertexts without decryption.  
 Homomorphic operations such as addition and 
multiplication can be applied to the ciphertexts, enabling 
privacy-preserving data analysis and secure collaborative 
computation.  
 Decryption:  
 The recipient decrypts the symmetric encryption key using 
their private key, allowing them to  
decrypt the data encrypted with AES and perform further 
computations or analysis. 
Applications :  
    -Secure Communication: Hybrid cryptosystems are widely 
used to secure communication channels, such as SSL/TLS for 
securing web traffic. Asymmetric encryption is used for key 
exchange and authentication, while symmetric encryption is 
used for bulk data transmission. 
        - Data Storage: Hybrid cryptosystems are employed to 
secure stored data in databases, file systems, and cloud 
storage services. Asymmetric encryption can be used to 
encrypt symmetric keys, which in turn encrypt the actual 
data. 
Challenges : Hybrid cryptographic systems face challenges 
in key management, algorithm selection, performance 

 
4 Efficient Homomorphic Proxy Re-Encryption for 

Arithmetic Circuit Evaluation" by Zhoujun Li, Wenjing 

overhead, integration complexity, and security 
risks.Effectively addressing these challenges is critical to 
ensuring the robustness and effectiveness of hybrid 
cryptographic systems in securing communication channels, 
data storage, and digital signatures, along with other 
applications. 

C. Proxy Re-Encryption:   
Proxy Re-Encryption (PRE) is a [4] cryptographic technique 
that allows a semi-trusted proxy to transform ciphertexts 
encrypted under one key into ciphertexts that can be 
decrypted under another key, without the need to decrypt and 
re-encrypt the data. While AES itself doesn't directly support 
PRE, it can be used within a PRE framework to provide 
encryption and decryption capabilities.  
Here's how PRE can be applied in an AES-based 
homomorphic encryption setting:  
Overview: 
 Proxy Re-Encryption (PRE): PRE enables a proxy entity to 
transform ciphertexts from one encryption key to another, 
facilitating secure data sharing and delegation of access 
rights.  AES-based Homomorphic Encryption: AES is a 
symmetric encryption algorithm that can be used for data 
encryption and decryption within a PRE framework. 
Working Principle: 
 Initial Encryption:  The data owner encrypts their data using 
AES encryption with their own secret key, generating 
ciphertexts that only they can decrypt.  
 Proxy Re-Encryption:  The data owner delegates access 
rights to specific recipients by providing them with re 
encryption keys.  The proxy entity, armed with the re-
encryption keys, transforms the ciphertexts encrypted under 
the data owner's key into ciphertexts that can be decrypted by 
the recipients' keys using a proxy re-encryption algorithm.  
Decryption:  The recipients decrypt the transformed 
ciphertexts using their own secret keys, obtaining the original 
plaintext data.  
Applications :  
      -Content Distribution: PRE can be used for secure content 
distribution, allowing content providers to encrypt data once 
and delegate re-encryption to proxies for distribution to 
different users or devices, without compromising data 
confidentiality. 
         -Secure Messaging: PRE can enhance the privacy and 
security of messaging applications by allowing messages to 
be encrypted once by the sender and re-encrypted for 
different recipients by proxies, ensuring end-to-end 
encryption without the need for the sender to manage 
multiple keys. 
Challenges : Proxy re-encryption (PRE) faces challenges in 
key management, proxy reliability, performance overhead, 
scalability, and privacy issues.Effective key management, 
reliable proxy assurance, performance optimization, 
scalability solutions, and privacy protection mechanisms are 

Lou, and Y. Thomas Hou. (Reference: 
https://ieeexplore.ieee.org/document/6562705 
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essential to successfully deploying PRE to enable access 
control and share data securely. 

D. Homomorphic Properties of AES-Like 
Ciphers: 

Homomorphic properties of AES-like ciphers in AES-based 
homomorphic encryption refer to the ability of these ciphers 
to preserve certain algebraic operations on encrypted data, 
allowing computations to be performed on ciphertexts 
directly without decryption. While AES itself lacks inherent 
homomorphic properties, researchers have explored the 
development of AES-like ciphers with homomorphic 
capabilities within a homomorphic encryption framework. 
Here's a brief overview: 
Overview:  
 AES-Like Ciphers: These are encryption algorithms 
designed to mimic the structure and security properties of 
AES while incorporating homomorphic properties.  
Homomorphic Encryption Framework: AES-like ciphers 
with homomorphic properties operate within a homomorphic 
encryption framework, enabling computations on encrypted 
data without decryption.  Homomorphic Operations: 
Homomorphic encryption schemes support operations such 
as addition and multiplication on encrypted data, allowing 
mathematical computations to be performed on ciphertexts. 
Homomorphic Properties:  
1. Additive Homomorphism:  AES-like ciphers with additive 
homomorphic properties preserve addition operations on 
ciphertexts. When two ciphertexts encrypted under the same 
key are added together, the result decrypts to the sum of the 
corresponding plaintexts.  
2. Multiplicative Homomorphism:  Some AES-like ciphers 
exhibit multiplicative homomorphic properties, preserving 
multiplication operations on ciphertexts. When two 
ciphertexts encrypted under the same key are multiplied 
together, the result decrypts to the product of the 
corresponding plaintexts.  
 Key Components: 
1. AES Encryption: Utilize the AES algorithm for encrypting 
data or intermediate values within the homomorphic 
encryption scheme. AES provides efficient and secure 
encryption of data blocks. 
2. Homomorphic Encryption Scheme: Incorporate a 
homomorphic encryption scheme that supports the desired 
homomorphic operations, such as addition and 
multiplication, on the encrypted data. 3. Key Management: 
Implement secure key management practices to ensure the 
confidentiality and integrity of encryption keys used in both 
AES and the homomorphic encryption scheme. 
Applications : 
  -Secure Outsourcing: Organizations can outsource 
computational tasks to untrusted servers while safeguarding 
data privacy using homomorphic AES-like ciphers. This 
allows for secure cloud computing and data processing 
without exposing sensitive information. 
    -Secure Messaging: Homomorphic properties of AES-like 
ciphers empower secure messaging applications to perform 

operations on encrypted messages without decryption. This 
enhances privacy and confidentiality in communication 
channels. 
  -Privacy-Preserving Machine Learning: Homomorphic 
AES-like ciphers enable secure computation on encrypted 
machine learning models and data. Multiple parties can 
collaborate on machine learning tasks while preserving the 
privacy of their sensitive information. 
Challenges : Developing homomorphic properties in AES-
like ciphers presents challenges in security assurance, 
computational efficiency, key management, and algorithmic 
complexity. Balancing security with computational overhead, 
securely managing cryptographic keys, and validating 
complex algorithms are essential for realizing the potential of 
homomorphic AES-like ciphers in enabling secure and 
privacy-preserving computation. 

VI. REAL-WORLD APPLICATIONS AND USE CASES 
Homomorphic encryption schemes using AES can be applied 
in various real-world scenarios across different domains. 
Here are some examples: 
 
Secure Outsourcing of Data Processing: Homomorphic 
encryption allows computations to be performed on 
encrypted data without decrypting it first. This is particularly 
useful in scenarios where sensitive data needs to be processed 
by untrusted third parties, such as cloud service providers. 
For instance, a company could outsource data analytics tasks 
to a cloud provider while keeping the data encrypted. The 
cloud provider can perform computations on the encrypted 
data using homomorphic encryption, preserving data privacy. 
 
Healthcare Data Analysis: In healthcare, patient data is highly 
sensitive and subject to strict privacy regulations. 
Homomorphic encryption can enable secure data analysis on 
encrypted medical records. For example, hospitals could 
collaborate with research institutions to perform statistical 
analysis on encrypted patient data without compromising 
patient privacy. 
 
Financial Data Analysis: Financial institutions deal with large 
volumes of sensitive financial data that need to be analyzed 
for various purposes such as risk assessment, fraud detection, 
and customer profiling. Homomorphic encryption can be 
used to securely analyze this data while keeping it encrypted, 
thus ensuring confidentiality and compliance with 
regulations like GDPR or PCI-DSS. 
 
Secure Multi-Party Computation (SMPC): Homomorphic 
encryption can facilitate secure multi-party computation 
where multiple parties wish to jointly compute a function 
over their inputs while keeping those inputs private. For 
example, in a scenario where several organizations want to 
calculate aggregate statistics from their individual datasets 
without revealing the raw data, homomorphic encryption 
enables this computation to be performed securely. 
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Privacy-Preserving Machine Learning: Homomorphic 
encryption can also be used to train machine learning models 
on encrypted data while preserving data privacy. This is 
particularly relevant in situations where data owners are 
concerned about sharing their sensitive data with third 
parties. With homomorphic encryption, data can remain 
encrypted throughout the training process, and only the 
encrypted model parameters are shared or used for prediction. 
 
Secure IoT Data Processing: With the proliferation of Internet 
of Things (IoT) devices, there's a growing need to process 
sensitive data collected from these devices while preserving 
privacy. Homomorphic encryption can enable secure and 
privacy-preserving data processing in IoT environments, 
allowing for analysis and decision-making without exposing 
raw sensor data to unauthorized parties. 
 
Blockchain and Cryptocurrency: Homomorphic encryption 
can enhance the privacy and confidentiality of transactions in 
blockchain networks. By encrypting transaction data 
homomorphically, participants can perform certain 
operations on the encrypted data within smart contracts while 
keeping the underlying transaction details 
confidential.[1][2][3][4][5]. 
 

VII. THE CHALLENGES AND FUTURE DIRECTIONS 
Homomorphic encryption, especially when based on AES 
(Advanced Encryption Standard)5, holds great promise for 
secure computation over encrypted data. However, several 
challenges and opportunities for future research and 
development remain in this field, however, several challenges 
and opportunities for future research and development 
persist.6 

1.  Performance Optimization: The primary challenge with 
AES-based homomorphic encryption is the computational 
overhead. AES is a symmetric encryption algorithm, and 
performing homomorphic operations on encrypted data often 
involves complex mathematical operations, which can lead to 
significant computational costs. Future research should focus 
on improving the performance of AES-based homomorphic 
encryption schemes, in order to make them more practical for 
real-world applications. 

2.  Security Analysis7: Although AES is a widely utilized 
encryption standard that is renowned for its security, its 

 
5 Garrison, G., Wakefield, R. L., & Kim, S. (2015). The 
effects of IT capabilities and delivery model on cloud 

computing success and firm performance for cloud 
supported processes and operations. International Journal of 

Information Management, 35, 377-393. 
6 Zhang, D., Feng, G., Shi, Y., & Srinivasan, D. (2021). 

Physical Safety and Cyber Security Analysis of Multi-Agent 
Systems: A Survey of Recent Advances. IEEE/CAA Journal 

of Automatica Sinica, 8, 319-333. 

implementation in a homomorphic encryption context 
introduces additional security considerations. In the future, it 
is imperative to conduct comprehensive security analyses of 
homomorphic encryption schemes based on AES in order to 
guarantee that they offer the necessary levels of 
confidentiality, integrity, and authenticity. 

3.    Scalability: As the volume of data increases, scalability 
emerges as a crucial concern in homomorphic encryption. 
Future research should examine methods to enhance the 
scalability of AES-based homomorphic encryption schemes, 
thereby enabling efficient computation over vast datasets 
without compromising security or performance. 

4.  Homomorphic Operations Support: AES-based 
homomorphic encryption schemes typically offer a restricted 
range of homomorphic operations, such as addition and 
multiplication. Future research should aim to broaden the 
range of supported operations to facilitate more intricate 
computations on encrypted data, thereby enhancing the utility 
of homomorphic encryption in diverse domains. 

5.   Key Management8: An efficient key management system 
is essential for the secure deployment of AES-based 
homomorphic encryption schemes. Future research should be 
focused on developing robust key management mechanisms 
that can handle the complexities of homomorphic encryption 
while ensuring the confidentiality and integrity of encryption 
keys.[3][6] 

6. Standardization and Interoperability: The 
establishment of standards for AES-based homomorphic 
encryption can facilitate interoperability and encourage 
adoption across diverse platforms and applications. Future 
research should prioritize standardization initiatives to 
guarantee compatibility and ease of integration with existing 
systems and protocols. 

7.     Hardware Acceleration: The utilization of specialized 
hardware, such as secure enclaves or hardware accelerators, 
can significantly enhance the performance of AES-based 
homomorphic encryption schemes. Future research should 
explore hardware-based approaches to accelerate 
homomorphic computations while still maintaining security 
guarantees. 

7 Dobraunig, C., Grassi, L., Helminger, L., Rechberger, C., 
Schofnegger, M., & Walch, R. (2023). Pasta: A Case for 

Hybrid Homomorphic Encryption. IACR Cryptology ePrint 
Archive, 2023, 30-73 

8 P, A., Sharma, A., Singla, A., Sharma, N., & V, D. G. 
(2022). IoT Group Key Management using Incremental 
Gaussian Mixture Model. In International Conference 
Electronic Systems, Signal Processing and Computing 

Technologies [ICESC-] (pp. 469-474). 
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8.   Privacy-Preserving Machine Learning: Homomorphic 
encryption has the potential to allow privacy-preserving 
machine learning by allowing computations on encrypted 
data. Future research should focus on developing AES-based 
homomorphic encryption schemes for machine learning 
applications, which would enable secure and privacy-
preserving model training and inference.[8] 

9.  Usability and Accessibility: The implementation and
utilization of AES-based homomorphic encryption is 
imperative for its widespread adoption. Future research 
should prioritize usability and accessibility by developing 
user-friendly tools, libraries, and frameworks that will make 
it easier for developers to integrate homomorphic encryption 
into their applications. 

10.    Real-World Applications: Ultimately, it is imperative 
to validate the practicality and efficacy of AES-based 
homomorphic encryption in real-world applications in order 
to facilitate its adoption. Research should focus on 
demonstrating the feasibility and performance of 
homomorphic encryption in various use cases, such as secure 
outsourcing of computations, privacy-preserving data 
analytics, and secure multiparty computation. 

Exploring these future directions will contribute to the 
advancement of AES-based homomorphic encryption and 
pave the way for its widespread adoption in securing sensitive 
data while enabling secure computation over encrypted 
information. Addressing these challenges and advancing 
AES-based homomorphic encryption techniques will be 
crucial for broader adoption and seamless integration into 
real-world scenarios. 

VIII. CONCLUSION

In conclusion, this article explored the potential of 
Homomorphic Encryption using the established Advanced 
Encryption Standard (AES) algorithm. We delved into the 

fundamentals of this approach, examining various techniques 
for performing computations on encrypted data with AES. By 
showcasing real-world applications and use cases, we've 
highlighted the transformative potential of this technology in 
areas like cloud computing and secure data analysis. 
However, challenges remain, such as computational 
overhead and limited operation support. As research 
progresses, overcoming these hurdles will unlock the full 
potential of AES-based Homomorphic Encryption, paving 
the way for a future where data security and usability coexist 
seamlessly. 
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